Granular ball-based label enhancement for dimensionality reduction in multi-label data

被引:5
|
作者
Qian, Wenbin [1 ]
Ruan, Wenyong [1 ]
Li, Yihui [1 ]
Huang, Jintao [2 ]
机构
[1] Jiangxi Agr Univ, Sch Comp & Informat Engn, Nanchang 330045, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Dimensionality reduction; Granular computing; Label enhancement; Multi-label data; Linear discriminant analysis; CLASSIFICATION;
D O I
10.1007/s10489-023-04771-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As an important preprocessing procedure, dimensionality reduction for multi-label learning is an effective way to solve the challenge caused by high-dimensionality data. Most existing dimensionality reduction methods are mainly used to deal with single-label and multi-label data, which assumes each related label to the instance with the same important degree. However, there are different relatively important degrees for the related labels of each instance in many real applications. In this paper, a granular ball-based label enhancement algorithm is proposed to convert the logical label into label distribution for obtaining more supervision information. The granular ball can be regarded as local coarse grain to explore sample similarity based on neighborhood viewpoints. Then, the between-granular ball scatter and within-granular ball scatter measures are presented, which are utilized to construct a label distribution feature extraction algorithm. In addition, a two-stage mutual iterative learning framework is developed, label enhancement and dimensionality reduction are mutual interactive. Finally, Experiments are conducted with the six state-of-the-art methods on eleven multi-label data in terms of multiple representative evaluation measures. Experimental results show that the proposed method significantly outperforms other comparison methods by an average of 36.8% over six widely-used evaluation metrics.
引用
收藏
页码:24008 / 24033
页数:26
相关论文
共 50 条
  • [31] Multi-label feature selection for missing labels by granular-ball based mutual information
    Shu, Wenhao
    Hu, Yichen
    Qian, Wenbin
    APPLIED INTELLIGENCE, 2024, 54 (23) : 12589 - 12612
  • [32] Data reduction via multi-label prototype generation
    Ougiaroglou, Stefanos
    Filippakis, Panagiotis
    Fotiadou, Georgia
    Evangelidis, Georgios
    NEUROCOMPUTING, 2023, 526 : 1 - 8
  • [33] Oversampling multi-label data based on natural neighbor and label correlation
    Liu, Bin
    Zhou, Ao
    Wei, Bingkun
    Wang, Jin
    Tsoumakas, Grigorios
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259
  • [34] Synthetic Oversampling of Multi-label Data Based on Local Label Distribution
    Liu, Bin
    Tsoumakas, Grigorios
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 180 - 193
  • [35] An Improved ML-kNN Multi-label Classification Model Based on Feature Dimensionality Reduction
    Li, Zhi-qiang
    Cao, Shuai-yi
    Guo, Hong-chen
    INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS AND ELECTRONIC ENGINEERING (CMEE 2016), 2016,
  • [36] Dependence maximization based label space dimension reduction for multi-label classification
    Zhang, Ju-Jie
    Fang, Min
    Wang, Hongchun
    Li, Xiao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 45 : 453 - 463
  • [37] Multi-label Image Classification with A Probabilistic Label Enhancement Model
    Li, Xin
    Zhao, Feipeng
    Guo, Yuhong
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 430 - 439
  • [38] Learning shared subspace for multi-label dimensionality reduction via dependence maximization
    Shu, Xin
    Lai, Darong
    Xu, Huanliang
    Tao, Liang
    NEUROCOMPUTING, 2015, 168 : 356 - 364
  • [39] Robust multi-label feature selection with shared label enhancement
    Li, Yonghao
    Hu, Juncheng
    Gao, Wanfu
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (12) : 3343 - 3372
  • [40] Multi-label Text Classification Using Semantic Features and Dimensionality Reduction with Autoencoders
    Alkhatib, Wael
    Rensing, Christoph
    Silberbauer, Johannes
    LANGUAGE, DATA, AND KNOWLEDGE, LDK 2017, 2017, 10318 : 380 - 394