Spin-density calculation via the graphical unitary group approach

被引:3
|
作者
Spada, Rene F. K. [1 ]
Franco, Mauricio P. [1 ]
Nieman, Reed [2 ]
Aquino, Adelia J. A. [3 ]
Shepard, Ron [4 ]
Plasser, Felix [5 ]
Lischka, Hans [2 ]
机构
[1] Inst Tecnol Aeronaut, Dept Fis, Sao Jose Dos Campos, SP, Brazil
[2] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA
[3] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
[4] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL USA
[5] Loughborough Univ, Dept Chem, Loughborough, Leics, England
基金
美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
Graphical unitary group approach; spin-density; phenalenyl; spin-promotion index; CONFIGURATION-INTERACTION; QUANTUM-CHEMISTRY; PROGRAM SYSTEM; AB-INITIO; CHARACTER; DFT; APPROXIMATION; PHENALENYL; COLUMBUS; VALENCE;
D O I
10.1080/00268976.2022.2091049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we discuss the calculation of the spin-density matrix from fundamental spin principles as implemented in the COLUMBUS Program System employing the graphical unitary group approach (GUGA). First, a general equation for the spin-density matrix is derived in terms of the one-and two-particle reduced density matrices, quantities that are spin-independent and readily available within the GUGA formalism. Next, the evaluation of this equation using the Shavitt loop values is discussed. Finally, the spatially resolved counterpart of the spin-density matrix, the spin distribution, is calculated for the phenalenyl radical and structures produced by heteroatoms with mono- and di-substitutions. The physical meaning of the spin-density along with its computational description using various methods is discussed putting special emphasis on negative contributions to the spin-density and their quantification via a spin-promotion index.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Atomic spin-density polarization index and atomic spin-density information entropy distance
    Fuentealba, P
    Melin, J
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 90 (01) : 334 - 341
  • [22] Spin-orbit configuration interaction using the graphical unitary group approach and relativistic core potential and spin-orbit operators
    Yabushita, S
    Zhang, ZY
    Pitzer, RM
    JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (29): : 5791 - 5800
  • [23] A graphical unitary group approach-based hybrid density functional theory multireference configuration interaction method
    Beck, Eric V.
    Stahlberg, Eric A.
    Burggraf, Larry W.
    Blaudeau, Jean-Philippe
    CHEMICAL PHYSICS, 2008, 349 (1-3) : 158 - 169
  • [24] FROHLICH CONDUCTION IN SPIN-DENSITY WAVES AND FIELD-INDUCED SPIN-DENSITY WAVES
    MAKI, K
    VIROSZTEK, A
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1990, 90-1 : 758 - 762
  • [25] A GENERAL-APPROACH TO CHARGE SPIN-DENSITY WAVES ELECTRODYNAMICS
    BRAZOVSKII, S
    JOURNAL DE PHYSIQUE I, 1993, 3 (12): : 2417 - 2435
  • [26] Spin-density fluctuation in paramagnets
    Bai, Y
    Ryu, CM
    Kim, CK
    You, SK
    Nahm, K
    PHYSICAL REVIEW B, 1996, 54 (01): : 33 - 36
  • [27] CHARGE AND SPIN-DENSITY WAVES
    BROWN, S
    GRUNER, G
    SCIENTIFIC AMERICAN, 1994, 270 (04) : 50 - 56
  • [28] A spin-density polarization index
    Worsnop, SK
    Boyd, RJ
    Sarasola, C
    Ugalde, JM
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (07): : 2824 - 2830
  • [29] MAGNETOTRANSPORT IN SPIN-DENSITY WAVES
    MAKI, K
    PHYSICAL REVIEW B, 1993, 47 (17): : 11506 - 11509
  • [30] SPIN-DENSITY OF PARAMAGNETIC PD
    CABLE, JW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (03): : 355 - 355