DsP-YOLO: An anchor-free network with DsPAN for small object detection of multiscale defects

被引:70
|
作者
Zhang, Yan [1 ]
Zhang, Haifeng [1 ]
Huang, Qingqing [1 ]
Han, Yan [1 ]
Zhao, Minghang [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Minist Educ, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
[2] Harbin Inst Technol Weihai, Sch Ocean Engn, Weihai 264209, Shandong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Industrial defect; YOLOv8; Small object detection; Feature enhancement; Feature fusion; Anchor -free network; ALGORITHM;
D O I
10.1016/j.eswa.2023.122669
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Industrial defect detection is of great significance to ensure the quality of industrial products. The surface defects of industrial products are characterized by multiple scales, multiple types, abundant small objects, and complex background interference. In particular, small object detection of multiscale defects under complex background interference poses significant challenges for defect detection tasks. How to improve the algorithm's ability to detect industrial defects, especially in enhancing the detection capabilities of small-sized defects, while ensuring that the inference speed is not overly affected is a long-term prominent challenge. Aiming at achieving accurate and fast detection of industrial defects, this paper proposes an anchor-free network with DsPAN for small object detection. The core of this method is to propose a new idea i.e., feature enhancement in the feature fusion network for the feature information of small-size objects. Firstly, anchor-free YOLOv8 is adopted as the basic framework for detection to eliminate the affections of hyperparameters related to anchors, as well as to improve the detection capability of multi-scale and small-size defects. Secondly, considering the PAN path (top layer of neural networks for feature fusion) is more task-specific, we advocate that the underlying feature map of the PAN path is more vulnerable to small object detection. Hence, we in-depth study the PAN path and point out that the standard PAN will encounter several drawbacks caused by losing local details and position information in deep layer. As an alternative, we propose a lightweight and detail-sensitive PAN (DsPAN) for small object detection of multiscale defects by designing an attention mechanism embedded feature transformation module(LCBHAM) and optimizing the lightweight implementation. Our proposed DsPAN is very easy to be incorporated in YOLO series framework. The proposed method is evaluated on three public datasets, NEU-DET, PCB-DET, and GC10-DET. The mAP of the method is 80.4%, 95.8%, and 76.3%, which are 3.6%, 2.1%, and 3.9% higher than that of YOLOv8 and significantly higher than the state-of-the-art (SOTA) detection methods. Also, the method achieves the second-highest inference speed among the thirteen models tested. The results indicate that DsP-YOLO is expected to be used for real-time defect detection in industry.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] High-resolution network Anchor-free object detection method based on iterative aggregation
    Wang X.
    Li Z.
    Zhang H.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (12): : 2533 - 2541
  • [32] FCOS-Lite: An Efficient Anchor-free Network for Real-time Object Detection
    Liu, Shuai
    Chi, Jianning
    Wu, Chengdong
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1519 - 1524
  • [33] Aligning Localization and Classification for Anchor-Free Object Detection in Aerial Imagery
    Zhang, Cong
    Ju, Yakun
    Xiao, Jun
    Yang, Yuting
    Lam, Kin-Man
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2024, 2024, 13164
  • [34] An Anchor-Free Method Based on Feature Balancing and Refinement Network for Multiscale Ship Detection in SAR Images
    Fu, Jiamei
    Sun, Xian
    Wang, Zhirui
    Fu, Kun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1331 - 1344
  • [35] FCOSR: A Simple Anchor-Free Rotated Detector for Aerial Object Detection
    Li, Zhonghua
    Hou, Biao
    Wu, Zitong
    Ren, Bo
    Yang, Chen
    REMOTE SENSING, 2023, 15 (23)
  • [36] AOGC: Anchor-Free Oriented Object Detection Based on Gaussian Centerness
    Wang, Zechen
    Bao, Chun
    Cao, Jie
    Hao, Qun
    REMOTE SENSING, 2023, 15 (19)
  • [37] AN ORIENTATION-AWARE ANCHOR-FREE DETECTOR FOR AERIAL OBJECT DETECTION
    Duan, Mudi
    Meng, Ran
    Xiao, Liang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3075 - 3078
  • [38] Adaptive spatial and scale label assignment for anchor-free object detection
    Dang, Min
    Liu, Gang
    Chen, Chao
    Wang, Di
    Li, Xike
    Wang, Quan
    PATTERN RECOGNITION, 2025, 164
  • [39] Mine underground object detection algorithm based on TTFNet and anchor-free
    Song, Zhen
    Qing, Xuwen
    Zhou, Meng
    Men, Yuting
    OPEN COMPUTER SCIENCE, 2024, 14 (01):
  • [40] SAR: Single-Stage Anchor-Free Rotating Object Detection
    Lu, Junyan
    Li, Tie
    Ma, Jingyu
    Li, Zhuqiang
    Jia, Hongguang
    IEEE ACCESS, 2020, 8 (08): : 205902 - 205912