Let G be a graph on n vertices, P be a property defined on all graphs on n vertices and k be a positive integer. A property P is said to be k-stable, if whenever G + uv has the property P and the sum of the degrees of u and v in G is at least k, then G itself has the property P. Assume property P is k-stable, and G is an n-vertex graph with minimum degree at least d and without the property P. In this paper we obtain the maximum possible number of r-cliques in the graph G. Furthermore, assume the property P of containing a graph in a family .F is k-stable, we determine the Turan number ex(r)(n, Berge -.F) for the case r <= [ (k-1) (2) ] -1 and characterize the extremal hypergraphs. For the case [(k-1) (2) ] <= r <= k, we give an upper bound on ex(r)(n, Berge -.F). Several known results are generalized.(c) 2023 Elsevier B.V. All rights reserved.
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Cent European Univ, Budapest, HungaryHungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Gyori, E.
Lemons, N.
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USAHungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Lemons, N.
Salia, N.
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Cent European Univ, Budapest, HungaryHungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Salia, N.
Zamora, O.
论文数: 0引用数: 0
h-index: 0
机构:
Cent European Univ, Budapest, Hungary
Univ Costa Rica, San Jose, Costa RicaHungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
机构:
Univ Illinois, Dept Math, Urbana, IL 61821 USA
Univ Calif San Diego, Dept Math, San Diego, CA 92093 USAUniv Illinois, Dept Math, Urbana, IL 61821 USA
Balogh, Jozsef
Lenz, John
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Urbana, IL 61821 USAUniv Illinois, Dept Math, Urbana, IL 61821 USA