On the interpolation constants for variable Lebesgue spaces

被引:0
|
作者
Karlovych, Oleksiy [1 ,4 ]
Shargorodsky, Eugene [2 ,3 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, Dept Matemat, Caparica, Portugal
[2] Kings Coll London, Dept Math, London, England
[3] Tech Univ Dresden, Fak Math, Dresden, Germany
[4] Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, Dept Dematemat, P-2829516 Caparica, Portugal
关键词
Calderon product; complex method of interpolation; interpolation constant; Riesz-Thorin interpolation theorem; variable Lebesgue space; OPERATORS;
D O I
10.1002/mana.202100549
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For theta is an element of (0,1) and variable exponents p(0)(center dot), q(0)(center dot) and p(1)(center dot), q(1)(center dot) with values in [1, infinity], let the variable exponents p(theta)(center dot), q(theta)(center dot) be defined by 1/p(theta)(center dot) := (1 - theta)/p(0)(center dot) + theta/p(1)(center dot), 1/q(theta) (center dot) := (1 - theta)/q(0)(center dot) + theta/q(1)(center dot). The Riesz-Thorin-type interpolation theorem for variable Lebesgue spaces says that if a linear operator.. acts boundedly fromthe variable Lebesgue space L-pj (center dot) to the variable Lebesgue space L-pj (center dot) for j = 0,1, then parallel to T parallel to(Lp theta(center dot)) -> (Lq theta(center dot)) <= C parallel to T parallel to(Lp theta(center dot)) -> (1-theta)(Lq theta(center dot)) parallel to T parallel to(Lp1(center dot)) -> (theta)(Lq1(center dot)) where C is an interpolation constant independent of T. We consider two different modulars e(max)(center dot) and e(sum)(center dot) generating variable Lebesgue spaces and give upper estimates for the corresponding interpolation constants C-max and C-sum, which imply that C-max <= 2 and C-sum <= 4, as well as, lead to sufficient conditions fo C-max = 1 and C-sum = 1. We also construct an example showing that, in many cases, our upper estimates are sharp and the interpolation constant is greater than one, even if one requires that p(j)(center dot) = qj(center dot), j =0,1 are Lipschitz continuous and bounded away from one and infinity (in this case, e(max)(center dot) = e(sum)(center dot)).
引用
收藏
页码:2877 / 2902
页数:26
相关论文
共 50 条
  • [41] Lebesgue spaces with variable exponent on a probability space
    Aoyama, Hiroyuki
    HIROSHIMA MATHEMATICAL JOURNAL, 2009, 39 (02) : 207 - 216
  • [42] Notes on commutator on the variable exponent Lebesgue spaces
    Dinghuai Wang
    Czechoslovak Mathematical Journal, 2019, 69 : 1029 - 1037
  • [43] Multilinear Fourier multipliers on variable Lebesgue spaces
    Jineng Ren
    Wenchang Sun
    Journal of Inequalities and Applications, 2014
  • [44] A Note on Noneffective Weights in Variable Lebesgue Spaces
    Fiorenza, Alberto
    Krbec, Miroslav
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [45] The Kakeya maximal operator on the variable Lebesgue spaces
    Saito, Hiroki
    Tanaka, Hitoshi
    ARCHIV DER MATHEMATIK, 2014, 103 (06) : 481 - 491
  • [46] Interpolation in variable exponent spaces
    Almeida, Alexandre
    Hasto, Peter
    REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (02): : 657 - 676
  • [47] Generalized potentials in variable exponent Lebesgue spaces on homogeneous spaces
    Hajibayov, Mubariz G.
    Samko, Stefan
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (01) : 53 - 66
  • [48] Approximation of functions and their conjugates in variable Lebesgue spaces
    Volosivets, S. S.
    SBORNIK MATHEMATICS, 2017, 208 (01) : 44 - 59
  • [49] The Kakeya maximal operator on the variable Lebesgue spaces
    Hiroki Saito
    Hitoshi Tanaka
    Archiv der Mathematik, 2014, 103 : 481 - 491
  • [50] Multilinear Fourier multipliers on variable Lebesgue spaces
    Ren, Jineng
    Sun, Wenchang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,