Acoustic emission response characteristics and numerical simulation of soil failure under uniaxial compression

被引:4
|
作者
Li, Xiangchun [1 ,2 ]
Li, Yi [1 ]
Yang, Chunli [3 ]
Zhang, Liang [4 ]
Li, Zhongbei [1 ,5 ]
Huang, Tao [1 ]
机构
[1] China Univ Min & Technol, Sch Emergency Management & Safety Engn, Beijing 100083, Peoples R China
[2] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100083, Peoples R China
[3] Beijing Municipal Inst Labour Protect, Occupat Hazards Control Technol Ctr, Beijing 100054, Peoples R China
[4] China Acad Coal Sci, Deep Min & Rockburst Res Inst, Beijing 100013, Peoples R China
[5] Univ Wollongong, Sch Civil Min Environm & Architectural Engn, Wollongong, NSW 2522, Australia
关键词
Silty clay; Acoustic emission response; Damage evolution; Numerical simulation; PFC2D; BONDED-PARTICLE MODEL; MECHANICAL-BEHAVIOR; DAMAGE EVOLUTION; STRESS-STRAIN; ROCK; CLAY;
D O I
10.1016/j.jappgeo.2024.105310
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The burgeoning expansion of urban rail transit has brought the safety of tunnel construction to the forefront. Accidents arising from mechanical failures in the surrounding rock and soil serve as substantial impediments to its progression. This research delves into the acoustic emission (AE) response characteristics and the detrimental effects of uniaxial loads on silty clay. To achieve this, an experimental system was devised to ascertain both mechanical properties and AE responses. A damage model, predicated on cumulative AE counts, was developed, and the principles governing damage evolution were distilled. Following this, the Particle Flow Code (PFC) was employed for numerical simulation. By manipulating mesoscopic parameters, we exerted control over the macroscopic mechanical attributes. This enabled a deep dive into the AE response and the energy shifts during the failure mechanism, offering a mesoscopic lens to understand deformation and failure. Our findings suggest: (1) The AE response during failure can be stratified into five distinct phases, with pronounced AE activity in the loading failure domain, aligning with established engineering practices. (2) The damage model, rooted in cumulative AE counts, adeptly captures the sequential damage evolution, closely mirroring the stress-strain dynamics. (3) PFC effectively simulates internal fractures and the AE dynamics during failure, pinpointing areas of susceptibility for targeted interventions. This research stands as a pivotal reference for engineering stability initiatives, augmenting our ability to foresee and preemptively address potential damages.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Experimental Study on Acoustic Emission Characteristics of Granite and Sandstone under Uniaxial Compression
    Sun, Yongshuai
    Yu, Fei
    Lv, Jianguo
    GEOFLUIDS, 2023, 2023
  • [22] Experimental study of the acoustic emission characteristics of salt rock under uniaxial compression
    Zhang, Chuanda
    Liang, Weiguo
    Xu, Suguo
    Yu, Yongjun
    ROCK CHARACTERISATION, MODELLING AND ENGINEERING DESIGN METHODS, 2013, : 189 - 194
  • [23] Mechanical Properties and Acoustic Emission Characteristics of Karst Limestone under Uniaxial Compression
    Chen, Jianxun
    Wang, Qingsong
    Guo, Jiaqi
    Luo, Yanbin
    Li, Yao
    Liu, Qin
    Wang, Hongyu
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
  • [24] Experimental study on acoustic emission characteristics of phyllite specimens under uniaxial compression
    School of Resources and Environment Engineering, Jiangxi University of Science and Technology, Ganzhou
    341000, China
    不详
    100083, China
    J. Eng. Sci. Technol. Rev., 3 (53-60):
  • [25] NUMERICAL SIMULATION OF CRACK GROWTH AND ACOUSTIC EMISSION CHARACTERISTICS IN SPECIMENS WITH COLINEAR CRACKS UNDER UNIAXIAL STRESS
    Mi, Wenjing
    FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (11): : 8181 - 8188
  • [26] Acoustic emission characteristics and fracture mechanism of cemented tailings backfill under uniaxial compression: experimental and numerical study
    Aiping Cheng
    Yafeng Zhou
    Guoju Chen
    Shibing Huang
    Zuyang Ye
    Environmental Science and Pollution Research, 2023, 30 : 55143 - 55157
  • [27] Acoustic emission characteristics and fracture mechanism of cemented tailings backfill under uniaxial compression: experimental and numerical study
    Cheng, Aiping
    Zhou, Yafeng
    Chen, Guoju
    Huang, Shibing
    Ye, Zuyang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (19) : 55143 - 55157
  • [28] Deformation failure and acoustic emission characteristics of continuous graded waste rock cemented backfill under uniaxial compression
    Guan Chen
    Yicheng Ye
    Nan Yao
    Fanghui Fu
    Nanyan Hu
    Zhen Zhang
    Environmental Science and Pollution Research, 2022, 29 : 80109 - 80122
  • [29] Deformation failure and acoustic emission characteristics of continuous graded waste rock cemented backfill under uniaxial compression
    Chen, Guan
    Ye, Yicheng
    Yao, Nan
    Fu, Fanghui
    Hu, Nanyan
    Zhang, Zhen
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (53) : 80109 - 80122
  • [30] Experimental study on uniaxial compression failure modes and acoustic emission characteristics of fissured sandstone under water saturation
    Chen, Jie
    Ye, Yabo
    Pu, Yuanyuan
    Xu, Wenhan
    Mengli, Deren
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 119