Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans

被引:2
|
作者
Namatevs, Ivars [1 ]
Nikulins, Arturs [1 ]
Edelmers, Edgars [1 ,2 ]
Neimane, Laura [3 ]
Slaidina, Anda [4 ]
Radzins, Oskars [5 ]
Sudars, Kaspars [1 ]
机构
[1] Inst Elect & Comp Sci, LV-1006 Riga, Latvia
[2] Riga Stradins Univ, Inst Anat & Anthropol, Dept Morphol, LV-1010 Riga, Latvia
[3] Riga Stradins Univ, Inst Stomatol, Dept Conservat Dent & Oral Hlth, LV-1007 Riga, Latvia
[4] Riga Stradins Univ, Inst Stomatol, Dept Prosthet Dent, LV-1007 Riga, Latvia
[5] Riga Stradins Univ, Inst Stomatol, Dept Orthodont, LV-1007 Riga, Latvia
关键词
artificial intelligence; CBCT; convolutional neural network; dentistry; deep learning; osteoporosis; RISK;
D O I
10.3390/tomography9050141
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this technical note, we examine the capabilities of deep convolutional neural networks (DCNNs) for diagnosing osteoporosis through cone-beam computed tomography (CBCT) scans of the mandible. The evaluation was conducted using 188 patients' mandibular CBCT images utilizing DCNN models built on the ResNet-101 framework. We adopted a segmented three-phase method to assess osteoporosis. Stage 1 focused on mandibular bone slice identification, Stage 2 pinpointed the coordinates for mandibular bone cross-sectional views, and Stage 3 computed the mandibular bone's thickness, highlighting osteoporotic variances. The procedure, built using ResNet-101 networks, showcased efficacy in osteoporosis detection using CBCT scans: Stage 1 achieved a remarkable 98.85% training accuracy, Stage 2 minimized L1 loss to a mere 1.02 pixels, and the last stage's bone thickness computation algorithm reported a mean squared error of 0.8377. These findings underline the significant potential of AI in osteoporosis identification and its promise for enhanced medical care. The compartmentalized method endorses a sturdier DCNN training and heightened model transparency. Moreover, the outcomes illustrate the efficacy of a modular transfer learning method for osteoporosis detection, even when relying on limited mandibular CBCT datasets. The methodology given is accompanied by the source code available on GitLab.
引用
收藏
页码:1772 / 1786
页数:15
相关论文
共 50 条
  • [21] Comparison of cone-beam computed tomography and panoramic radiography for mandibular morphometry
    Tassoker, M.
    Akin, D.
    Kabakci, A. D. Aydin
    Sener, S.
    FOLIA MORPHOLOGICA, 2019, 78 (04) : 862 - 870
  • [22] A new cone-beam computed tomography–driven index for osteoporosis prediction
    Julia Gonçalves Koehne de Castro
    Bruno Fontenele Carvalho
    Nilce Santos de Melo
    Paulo Tadeu de Souza Figueiredo
    Carla Ruffeil Moreira-Mesquita
    Karla de Faria Vasconcelos
    Reinhilde Jacobs
    André Ferreira Leite
    Clinical Oral Investigations, 2020, 24 : 3193 - 3202
  • [23] Osteoporosis prediction from the mandible using cone-beam computed tomography
    Barngkgei, Imad
    Al Haffar, Iyad
    Khattab, Razan
    IMAGING SCIENCE IN DENTISTRY, 2014, 44 (04) : 263 - 271
  • [24] Ensemble of Convolutional Neural Networks for Sparse-View Cone-Beam Computed Tomography
    Alves Junior, Carlos A.
    Alves Pereira, Luis F.
    Cavalcanti, George D. C.
    Ren, Tsang Ing
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [25] Prevalence and Characteristics of Root Resorption Identified in Cone-Beam Computed Tomography Scans
    Dao, Vi
    Mallya, Sanjay M.
    Markovic, Daniela
    Tetradis, Sotirios
    Chugal, Nadia
    JOURNAL OF ENDODONTICS, 2023, 49 (02) : 144 - 154
  • [26] Incidental Findings in Small Field of View Cone-beam Computed Tomography Scans
    Oser, David G.
    Henson, Brett R.
    Shiang, Elaine Y.
    Finkelman, Matthew D.
    Amato, Robert B.
    JOURNAL OF ENDODONTICS, 2017, 43 (06) : 901 - 904
  • [27] Cone-beam computed tomography for trauma
    Gupta, Saurabh
    Martinson, James R.
    Ricaurte, Daniel
    Scalea, Thomas M.
    Morrison, Jonathan J.
    JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2020, 89 (03): : E34 - E40
  • [28] Detection of Vertical Root Fractures In Vivo in Endodontically Treated Teeth by Cone-Beam Computed Tomography Scans
    Metska, Maria Elissavet
    Aartman, Irene Helena Adriana
    Wesselink, Paul Rudolf
    Ozok, Ahmet Rifat
    JOURNAL OF ENDODONTICS, 2012, 38 (10) : 1344 - 1347
  • [29] Tridimensional assessment of the mandibular angle in patients with different skeletal patterns by cone-beam computed tomography scans: a retrospective study
    Murilo Miranda-Viana
    Gabriel Mosso Moreira
    Larissa Moreira de Souza
    Yuri Nejaim
    Francisco Haiter-Neto
    Deborah Queiroz Freitas
    BMC Oral Health, 23
  • [30] Tridimensional assessment of the mandibular angle in patients with different skeletal patterns by cone-beam computed tomography scans: a retrospective study
    Miranda-Viana, Murilo
    Moreira, Gabriel Mosso
    de Souza, Larissa Moreira
    Nejaim, Yuri
    Haiter-Neto, Francisco
    Freitas, Deborah Queiroz
    BMC ORAL HEALTH, 2023, 23 (01)