Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans

被引:2
|
作者
Namatevs, Ivars [1 ]
Nikulins, Arturs [1 ]
Edelmers, Edgars [1 ,2 ]
Neimane, Laura [3 ]
Slaidina, Anda [4 ]
Radzins, Oskars [5 ]
Sudars, Kaspars [1 ]
机构
[1] Inst Elect & Comp Sci, LV-1006 Riga, Latvia
[2] Riga Stradins Univ, Inst Anat & Anthropol, Dept Morphol, LV-1010 Riga, Latvia
[3] Riga Stradins Univ, Inst Stomatol, Dept Conservat Dent & Oral Hlth, LV-1007 Riga, Latvia
[4] Riga Stradins Univ, Inst Stomatol, Dept Prosthet Dent, LV-1007 Riga, Latvia
[5] Riga Stradins Univ, Inst Stomatol, Dept Orthodont, LV-1007 Riga, Latvia
关键词
artificial intelligence; CBCT; convolutional neural network; dentistry; deep learning; osteoporosis; RISK;
D O I
10.3390/tomography9050141
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this technical note, we examine the capabilities of deep convolutional neural networks (DCNNs) for diagnosing osteoporosis through cone-beam computed tomography (CBCT) scans of the mandible. The evaluation was conducted using 188 patients' mandibular CBCT images utilizing DCNN models built on the ResNet-101 framework. We adopted a segmented three-phase method to assess osteoporosis. Stage 1 focused on mandibular bone slice identification, Stage 2 pinpointed the coordinates for mandibular bone cross-sectional views, and Stage 3 computed the mandibular bone's thickness, highlighting osteoporotic variances. The procedure, built using ResNet-101 networks, showcased efficacy in osteoporosis detection using CBCT scans: Stage 1 achieved a remarkable 98.85% training accuracy, Stage 2 minimized L1 loss to a mere 1.02 pixels, and the last stage's bone thickness computation algorithm reported a mean squared error of 0.8377. These findings underline the significant potential of AI in osteoporosis identification and its promise for enhanced medical care. The compartmentalized method endorses a sturdier DCNN training and heightened model transparency. Moreover, the outcomes illustrate the efficacy of a modular transfer learning method for osteoporosis detection, even when relying on limited mandibular CBCT datasets. The methodology given is accompanied by the source code available on GitLab.
引用
收藏
页码:1772 / 1786
页数:15
相关论文
共 50 条
  • [1] Osteoporosis detection using cone-beam computed tomography
    Geibel, M-A.
    Loeffler, F.
    Kildal, D.
    ORTHOPADE, 2016, 45 (12): : 1066 - 1071
  • [2] Mandible Bone Osteoporosis Detection using Cone-beam Computed Tomography
    Abu Marar, Rasha F.
    Uliyan, Diaa M.
    Al-Sewadi, Hamza A.
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2020, 10 (04) : 6027 - 6033
  • [3] Diagnostic criteria for the detection of mandibular osteomyelitis using cone-beam computed tomography
    Schulze, D.
    Blessmann, M.
    Pohlenz, P.
    Wagner, K. W.
    Heiland, M.
    DENTOMAXILLOFACIAL RADIOLOGY, 2006, 35 (04) : 232 - 235
  • [4] Cone-beam computed tomography of mandibular foramen and lingula for mandibular anesthesia
    Ahn, Byeong-Seob
    Oh, Song Hee
    Heo, Chong-Kwan
    Kim, Gyu-Tae
    Choi, Yong-Suk
    Hwang, Eui-Hwan
    IMAGING SCIENCE IN DENTISTRY, 2020, 50 (02) : 125 - 132
  • [5] Automated Orientation and Registration of Cone-Beam Computed Tomography Scans
    Anchling, Luc
    Hutin, Nathan
    Huang, Yanjie
    Barone, Selene
    Roberts, Sophie
    Miranda, Felicia
    Gurgel, Marcela
    Al Turkestani, Najla
    Tinawi, Sara
    Bianchi, Jonas
    Yatabe, Marilia
    Ruellas, Antonio
    Prieto, Juan Carlos
    Cevidanes, Lucia
    CLINICAL IMAGE-BASED PROCEDURES, FAIRNESS OF AI IN MEDICAL IMAGING, AND ETHICAL AND PHILOSOPHICAL ISSUES IN MEDICAL IMAGING, CLIP 2023, FAIMI 2023, EPIMI 2023, 2023, 14242 : 43 - 58
  • [6] Fusion of intra-oral scans in cone-beam computed tomography scans
    F. Baan
    R. Bruggink
    J. Nijsink
    T. J. J. Maal
    E. M. Ongkosuwito
    Clinical Oral Investigations, 2021, 25 : 77 - 85
  • [7] Fusion of intra-oral scans in cone-beam computed tomography scans
    Baan, F.
    Bruggink, R.
    Nijsink, J.
    Maal, T. J. J.
    Ongkosuwito, E. M.
    CLINICAL ORAL INVESTIGATIONS, 2021, 25 (01) : 77 - 85
  • [8] Diagnostic efficacy of cone-beam computed tomography for mandibular fractures
    Kaeppler, Gabriele
    Cornelius, Carl-Peter
    Ehrenfeld, Michael
    Mast, Gerson
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2013, 116 (01): : 98 - 104
  • [9] Mandibular Canal Branching Assessed With Cone-Beam Computed Tomography
    Khojastepour, Leila
    Nasiri, Mohammad Mehdi
    Hashemi, Khadijeh
    Ahrari, Farzaneh
    JOURNAL OF CRANIOFACIAL SURGERY, 2023, 34 (08) : E767 - E771
  • [10] Cone-Beam Computed Tomography Study of Mandibular Condylar Morphology
    Yalcin, Eda Didem
    Ararat, Emine
    JOURNAL OF CRANIOFACIAL SURGERY, 2019, 30 (08) : 2621 - 2624