Shortcut-to-Adiabatic Controlled-Phase Gate in Rydberg Atoms

被引:5
|
作者
Bosch, Luis S. Yague [1 ]
Ehret, Tim [1 ,7 ]
Petiziol, Francesco [2 ]
Arimondo, Ennio [3 ,4 ]
Wimberger, Sandro [5 ,6 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 12, D-69120 Heidelberg, Germany
[2] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
[3] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[4] Univ Pisa, Ist Nazionale Ott, Consiglio Nazionale Ric, Largo Pontecorvo 3, I-56127 Pisa, Italy
[5] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Parco Area Sci 7-A, I-43124 Parma, Italy
[6] INFN, Sez Milano Bicocca, Grp Collegato Parma, Parco Area Sci 7-A, I-43124 Parma, Italy
[7] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
关键词
quantum control; quantum optics; Rydberg atoms; superadiabatic methods; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; QUANTUM; DYNAMICS; PHOTONS; QUTIP;
D O I
10.1002/andp.202300275
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A shortcut-to-adiabatic protocol for the realization of a fast and high-fidelity controlled-phase gate in Rydberg atoms is developed. The adiabatic state transfer, driven in the high-blockade limit, is sped up by compensating nonadiabatic transitions via oscillating fields that mimic a counterdiabatic Hamiltonian. High fidelities are obtained in wide parameter regions. The implementation of the bare effective counterdiabatic field, without original adiabatic pulses, enables to bypass gate errors produced by the accumulation of blockade-dependent dynamical phases, making the protocol efficient also at low blockade values. As an application toward quantum algorithms, how the fidelity of the gate impacts the efficiency of a minimal quantum-error correction circuit is analyzed. Quantum gates are the backbone of digital quantum computing. A shortcut-to-adiabatic protocol is presented for the realization of controlled-phase gate in Rydberg atoms. The adiabatic state transfer for the gate is accelerated by compensating nonadiabatic transitions via oscillating fields. High fidelities and fast operation times are obtained, and an application to a minimal quantum-error correction circuit is analyzed. image
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Photonic controlled-PHASE gates through Rydberg blockade in optical cavities
    Das, Sumanta
    Grankin, Andrey
    Iakoupov, Ivan
    Brion, Etienne
    Borregaard, Johannes
    Boddeda, Rajiv
    Usmani, Imam
    Ourjoumtsev, Alexei
    Grangier, Philippe
    Sorensen, Anders S.
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [22] Multiple-qubit controlled unitary quantum gate for Rydberg atoms using shortcut to adiabaticity and optimized geometric quantum operations
    Li, Meng
    Guo, F-Q
    Jin, Z.
    Yan, L-L
    Liang, E-J
    Su, S-L
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [23] Coupler-Assisted Controlled-Phase Gate with Enhanced Adiabaticity
    Chu, Ji
    Yan, Fei
    PHYSICAL REVIEW APPLIED, 2021, 16 (05)
  • [24] Scheme for a linear-optical controlled-phase gate with programmable phase shift
    Lemr, Karel
    Bartkiewicz, Karol
    Cernoch, Antonin
    JOURNAL OF OPTICS, 2015, 17 (12)
  • [25] Design of integrated photonic controlled-phase gate with programmable phase for quantum applications
    Basay, Yalin
    Kocaman, Serdar
    QUANTUM COMPUTING, COMMUNICATION, AND SIMULATION II, 2022, 12015
  • [26] Controlled-Phase Gate Using Dynamically Coupled Cavities and Optical Nonlinearities
    Heuck, Mikkel
    Jacobs, Kurt
    Englund, Dirk R.
    PHYSICAL REVIEW LETTERS, 2020, 124 (16)
  • [27] Robust stimulated Raman shortcut-to-adiabatic passage with invariant-based optimal control
    Song, Xue-Ke
    Meng, Fei
    Liu, Bao-Jie
    Wang, Dong
    Ye, Liu
    Yung, Man-Hong
    OPTICS EXPRESS, 2021, 29 (06) : 7998 - 8014
  • [28] One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity
    Xiao, Yun-Feng
    Zou, Xu-Bo
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2007, 75 (05):
  • [29] Coupler Microwave-Activated Controlled-Phase Gate on Fluxonium Qubits
    Simakov, Ilya A.
    Mazhorin, Grigoriy S.
    Moskalenko, Ilya N.
    Abramov, Nikolay N.
    Grigorev, Alexander A.
    Moskalev, Dmitry O.
    Pishchimova, Anastasiya A.
    Smirnov, Nikita S.
    V. Zikiy, Evgeniy
    Rodionov, Ilya A.
    Besedin, Ilya S.
    PRX QUANTUM, 2023, 4 (04):
  • [30] Photonic Controlled-PHASE Gate using Dynamic Cavities and a Kerr Nonlinearity
    Heuck, Mikkel
    Jacobs, Kurt
    Englund, Dirk R.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,