DETERMINING THE BACKGROUND DRIVING PROCESS OF THE ORNSTEIN-UHLENBECK MODEL

被引:0
|
作者
Mariani, Maria C. [1 ]
Asante, Peter K. [2 ]
Kubin, William [2 ]
Tweneboah, Osei K. [3 ]
Beccar-Varela, Maria [1 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Computat Sci Program, El Paso, TX 79968 USA
[3] Ramapo Coll, Dept Data Sci, 505 Ramapo Valley Rd, Mahwah, NJ 07430 USA
关键词
Stochastic differential equation; Ito Calculus; Levy Process; Ornstein-Uhlenbeck model; Superposed Ornstein-Uhlenbeck model; Gaussian process; Background driving process (BDP); Diffusion entropy analysis (DEA); long-range correlations; detrended fluctuation analysis (DFA); rescaled range analysis (R/S); LEVY; VOLATILITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we determine appropriate background driving processes for the 3-component superposed Ornstein-Uhlenbeck model by analyzing the fractal characteristics of the data sets using the rescaled range analysis (R/S), the detrended fluctuation analysis (DFA), and the diffusion entropy analysis (DEA).
引用
收藏
页码:193 / 207
页数:15
相关论文
共 50 条
  • [21] ASYMPTOTIC DISTRIBUTIONS FOR ORNSTEIN-UHLENBECK PROCESS
    BEEKMAN, JA
    JOURNAL OF APPLIED PROBABILITY, 1975, 12 (01) : 107 - 114
  • [22] Analysis of a stochastic logistic model with diffusion and Ornstein-Uhlenbeck process
    Liu, Qun
    Jiang, Daqing
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (05)
  • [23] Using the Ornstein-Uhlenbeck process to model the evolution of interacting populations
    Bartoszek, Krzysztof
    Glemin, Sylvain
    Kaj, Ingemar
    Lascoux, Martin
    JOURNAL OF THEORETICAL BIOLOGY, 2017, 429 : 35 - 45
  • [24] Dynamic properties for a stochastic SEIR model with Ornstein-Uhlenbeck process
    Lu, Chun
    Xu, Chuanlong
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 216 (288-300) : 288 - 300
  • [25] LONG TIME BEHAVIOR OF A RUMOR MODEL WITH ORNSTEIN-UHLENBECK PROCESS
    Wang, Xiaohuan
    Wang, Xinyao
    Yang, Wanli
    QUARTERLY OF APPLIED MATHEMATICS, 2024,
  • [26] DERIVATION OF THE ORNSTEIN-UHLENBECK PROCESS FROM THE FLUCTUATION QUANTA MODEL
    TOYODA, T
    PHYSICS LETTERS A, 1979, 74 (3-4) : 167 - 169
  • [27] ORNSTEIN-UHLENBECK MODEL NEURON REVISITED
    LANSKY, P
    ROSPARS, JP
    BIOLOGICAL CYBERNETICS, 1995, 72 (05) : 397 - 406
  • [28] Driving an Ornstein-Uhlenbeck Process to Desired First-Passage Time Statistics
    Ghusinga, Khem Raj
    Srivastava, Vaibhav
    Singh, Abhyudai
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 869 - 874
  • [29] Dynamical behavior of a stochastic dengue model with Ornstein-Uhlenbeck process
    Liu, Qun
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (09)
  • [30] Using the Ornstein-Uhlenbeck Process for Random Exploration
    Nauta, Johannes
    Khaluf, Yara
    Simoens, Pieter
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON COMPLEXITY, FUTURE INFORMATION SYSTEMS AND RISK (COMPLEXIS), 2019, : 59 - 66