Deep Learning for Medical Image Cryptography: A Comprehensive Review

被引:17
|
作者
Lata, Kusum [1 ]
Cenkeramaddi, Linga Reddy [2 ]
机构
[1] LNM Inst Informat Technol, Dept Elect & Commun Engn, Jaipur 302031, India
[2] Univ Agder, Dept Informat & Commun Technol, N-4879 Grimstad, Norway
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 14期
关键词
medical image security; cryptography; deep learning; electronic health records (EHR); privacy; security; image authentication; image encryption; image decryption; IoMT; ARTIFICIAL-INTELLIGENCE; AUTOMATIC DETECTION; RADIATION-THERAPY; OBJECT DETECTION; NEURAL-NETWORK; SEGMENTATION; PRIVACY; CLASSIFICATION; DIAGNOSIS; DATASET;
D O I
10.3390/app13148295
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electronic health records (EHRs) security is a critical challenge in the implementation and administration of Internet of Medical Things (IoMT) systems within the healthcare sector's heterogeneous environment. As digital transformation continues to advance, ensuring privacy, integrity, and availability of EHRs become increasingly complex. Various imaging modalities, including PET, MRI, ultrasonography, CT, and X-ray imaging, play vital roles in medical diagnosis, allowing healthcare professionals to visualize and assess the internal structures, functions, and abnormalities within the human body. These diagnostic images are typically stored, shared, and processed for various purposes, including segmentation, feature selection, and image denoising. Cryptography techniques offer a promising solution for protecting sensitive medical image data during storage and transmission. Deep learning has the potential to revolutionize cryptography techniques for securing medical images. This paper explores the application of deep learning techniques in medical image cryptography, aiming to enhance the privacy and security of healthcare data. It investigates the use of deep learning models for image encryption, image resolution enhancement, detection and classification, encrypted compression, key generation, and end-to-end encryption. Finally, we provide insights into the current research challenges and promising directions for future research in the field of deep learning applications in medical image cryptography.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Review of Machine Learning and Deep Learning Techniques for Medical Image Analysis
    Saratkar, Saniya
    Raut, Rohini
    Thute, Trupti
    Chaudhari, Aarti
    Thakre, Gaitri
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1437 - 1443
  • [22] Medical image registration using deep neural networks: A comprehensive review
    Boveiri, Hamid Reza
    Khayami, Raouf
    Javidan, Reza
    Mehdizadeh, Alireza
    COMPUTERS & ELECTRICAL ENGINEERING, 2020, 87
  • [23] A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning
    Atasever, Sema
    Azginoglu, Nuh
    Terzi, Duygu Sinanc
    Terzi, Ramazan
    CLINICAL IMAGING, 2023, 94 : 18 - 41
  • [24] Reversible data hiding scheme using deep learning and visual cryptography for medical image communication
    Kumar, Namachivayam Rajesh
    Krishnan, Raghupathy Bala
    Manikandan, Ganesan
    Subramaniyaswamy, Vairavasundaram
    Kotecha, Ketan
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [25] Image Forgery Detection Using Cryptography and Deep Learning
    Oke, Ayodeji
    Babaagba, Kehinde O.
    BIG DATA TECHNOLOGIES AND APPLICATIONS, EAI INTERNATIONAL CONFERENCE, BDTA 2023, 2024, 555 : 62 - 78
  • [26] Review on Deep Learning Methodologies in Medical Image Restoration and Segmentation
    Hephzibah, R.
    Anandharaj, Hepzibah Christinal
    Kowsalya, G.
    Jayanthi, R.
    Chandy, D. Abraham
    CURRENT MEDICAL IMAGING, 2023, 19 (08) : 844 - 854
  • [27] Review on Deep Learning Algorithms for Heterogeneous Medical Image Processing
    Ma Z.-B.
    Mi Y.
    Zhang B.
    Zhang Z.
    Wu J.-Y.
    Huang H.-W.
    Wang W.-D.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (10): : 4870 - 4915
  • [28] A review of the application of deep learning in medical image classification and segmentation
    Cai, Lei
    Gao, Jingyang
    Zhao, Di
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (11)
  • [29] A Review Paper about Deep Learning for Medical Image Analysis
    Sistaninejhad B.
    Rasi H.
    Nayeri P.
    Computational and Mathematical Methods in Medicine, 2023, 2023
  • [30] Deep learning implementation of image segmentation in agricultural applications: a comprehensive review
    Lei, Lian
    Yang, Qiliang
    Yang, Ling
    Shen, Tao
    Wang, Ruoxi
    Fu, Chengbiao
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (06)