A comprehensive review of battery thermal management systems for electric vehicles

被引:11
|
作者
Cetin, Irfan [1 ]
Sezici, Ekrem [1 ]
Karabulut, Mustafa [1 ]
Avci, Emre [2 ]
Polat, Fikret [1 ]
机构
[1] Duzce Univ, Dept Mech Engn, Fac Engn, TR-81620 Duzce, Turkey
[2] Duzce Univ, Dept Elect & Elect Engn, Fac Engn, Duzce, Turkey
关键词
Battery thermal management; air cooling; liquid cooling; phase change material cooling; electrical vehicle; LITHIUM-ION BATTERY; PHASE-CHANGE MATERIAL; HEAT-TRANSFER; PERFORMANCE; MODULE; PACK; EMISSIONS; CYCLE; PIPE;
D O I
10.1177/09544089221123975
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Trying to prevent and mitigate carbon emissions and air pollution is one of the biggest challenges for the technological development of the automobile industry. In addition, the automobile industry has stepped up research and field applications of electric vehicles as the European Union encourages the restriction of the use of conventional fuel-powered vehicles such as diesel and gasoline vehicles. However, the cycle life, environmental adaptability, driving range, and charging time of the battery currently used in electric vehicles are far beyond comparison with internal combustion engines. Therefore, studies have focused on batteries, and battery thermal management systems (BTMSs) have been developed. Battery performance is highly dependent on temperature and the purpose of an effective BTMS is to ensure that the battery pack operates within an appropriate temperature range. Ensuring that the battery operates in the appropriate temperature range is vital for both efficiency and safety. To determine the best convenient BTMS for several types of battery packs attached to many factors such as volumetric constraints, installation costs, and working efficiency. The maximum temperature rise and the maximum temperature difference are the basic parameters to analyze the efficiency of the BTMS. Most of the research about thermal management has focused on especially air cooling, liquid cooling, and phase change material (PCM) cooling methods. In this study, different BTMSs (air cooling, liquid cooling, PCM cooling, etc.) were examined and their advantages and disadvantages were compared, usage restrictions in today's technology, requirements, and studies on this subject were reported.
引用
收藏
页码:989 / 1004
页数:16
相关论文
共 50 条
  • [21] A Detailed Review on Electric Vehicles Battery Thermal Management System
    Katoch, Sourav Singh
    Eswaramoorthy, M.
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING (ICAME 2020), PTS 1-6, 2020, 912
  • [22] Battery thermal management systems based on nanofluids for electric vehicles
    Abdelkareem, Mohammad Ali
    JOURNAL OF ENERGY STORAGE, 2024, 96
  • [23] A comprehensive review of novel cooling techniques and heat transfer coolant mediums investigated for battery thermal management systems in electric vehicles
    Youssef, Rekabra
    Kalogiannis, Theodoros
    Behi, Hamidreza
    Pirooz, Ashkan
    Van Mierlo, Joeri
    Berecibar, Maitane
    ENERGY REPORTS, 2023, 10 : 1041 - 1068
  • [24] A REVIEW ON THE CURRENT INDUSTRIAL USES AND THE FUTURE OUTLOOK OF BATTERY THERMAL MANAGEMENT SYSTEMS FOR ELECTRIC VEHICLES
    Choi, Nicholas
    Quach, Nhi V.
    Won, Yoonjin
    PROCEEDINGS OF ASME 2021 INTERNATIONAL TECHNICAL CONFERENCE AND EXHIBITION ON PACKAGING AND INTEGRATION OF ELECTRONIC AND PHOTONIC MICROSYSTEMS (INTERPACK2021), 2021,
  • [25] REVIEW OF BATTERY SYSTEMS FOR ELECTRIC VEHICLES
    CAPRIOGL.G
    SAE TRANSACTIONS, 1969, 78 : 85 - &
  • [26] Energy management and storage systems on electric vehicles: A comprehensive review
    Rimpas, Dimitrios
    Kaminaris, Stavros D.
    Aldarraji, Izzat
    Piromalis, Dimitrios
    Vokas, Georgios
    Papageorgas, Panagiotis G.
    Tsaramirsis, Georgios
    MATERIALS TODAY-PROCEEDINGS, 2022, 61 : 813 - 819
  • [27] The path from conventional battery thermal management systems to hybrid battery thermal management systems for electric vehicles, opportunities and challenges
    Bamdezh, M. A.
    Molaeimanesh, G. R.
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [28] A study of different battery thermal management systems for battery pack cooling in electric vehicles
    Wankhede, Sagar
    Thorat, Prajwal
    Shisode, Sanket
    Sonawane, Swapnil
    Wankhade, Rugved
    HEAT TRANSFER, 2022, 51 (08) : 7487 - 7539
  • [29] Battery and battery management for hybrid electric vehicles: a review
    Conte, F. V.
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2006, 123 (10): : 424 - 431
  • [30] Energy and battery management systems for electrical vehicles: A comprehensive review & recommendations
    Challoob, Ali Falih
    Bin Rahmat, Nur Azzammudin
    Ramachandaramurthy, Vigna Kumaran A. L.
    Humaidi, Amjad Jaleel
    ENERGY EXPLORATION & EXPLOITATION, 2024, 42 (01) : 341 - 372