Multi-Task Learning With Multi-Query Transformer for Dense Prediction

被引:15
|
作者
Xu, Yangyang [1 ]
Li, Xiangtai [2 ]
Yuan, Haobo [1 ]
Yang, Yibo [3 ]
Zhang, Lefei [1 ,4 ]
机构
[1] Wuhan Univ, Inst Artificial Intelligence, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Nanyang Technol Univ, S Lab, Singapore 637335, Singapore
[3] JD Explore Acad, Beijing 101111, Peoples R China
[4] Hubei Luojia Lab, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Scene understanding; multi-task learning; dense prediction; transformers; NETWORK;
D O I
10.1109/TCSVT.2023.3292995
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Previous multi-task dense prediction studies developed complex pipelines such as multi-modal distillations in multiple stages or searching for task relational contexts for each task. The core insight beyond these methods is to maximize the mutual effects of each task. Inspired by the recent query-based Transformers, we propose a simple pipeline named Multi-Query Transformer (MQTransformer) that is equipped with multiple queries from different tasks to facilitate the reasoning among multiple tasks and simplify the cross-task interaction pipeline. Instead of modeling the dense per-pixel context among different tasks, we seek a task-specific proxy to perform cross-task reasoning via multiple queries where each query encodes the task-related context. The MQTransformer is composed of three key components: shared encoder, cross-task query attention module and shared decoder. We first model each task with a task-relevant query. Then both the task-specific feature output by the feature extractor and the task-relevant query are fed into the shared encoder, thus encoding the task-relevant query from the task-specific feature. Secondly, we design a cross-task query attention module to reason the dependencies among multiple task-relevant queries; this enables the module to only focus on the query-level interaction. Finally, we use a shared decoder to gradually refine the image features with the reasoned query features from different tasks. Extensive experiment results on two dense prediction datasets (NYUD-v2 and PASCAL-Context) show that the proposed method is an effective approach and achieves state-of-the-art results.
引用
收藏
页码:1228 / 1240
页数:13
相关论文
共 50 条
  • [21] Hotspot Detection via Multi-task Learning and Transformer Encoder
    Zhu, Binwu
    Chen, Ran
    Zhang, Xinyun
    Yang, Fan
    Zeng, Xuan
    Yu, Bei
    Wong, Martin D. F.
    2021 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN (ICCAD), 2021,
  • [22] HirMTL: Hierarchical Multi-Task Learning for dense scene understanding
    Luo, Huilan
    Hu, Weixia
    Wei, Yixiao
    He, Jianlong
    Yu, Minghao
    NEURAL NETWORKS, 2025, 181
  • [23] Multi-source-Load Prediction Based on Multi-task Learning
    Yan, Zhaokang
    Cheng, Sida
    Shen, Jingwen
    Jiang, Hanyuan
    Ma, Gang
    Zou, Wenjin
    PROCEEDINGS OF 2023 INTERNATIONAL CONFERENCE ON WIRELESS POWER TRANSFER, VOL 4, ICWPT 2023, 2024, 1161 : 266 - 273
  • [24] CoTexT: Multi-task Learning with Code-Text Transformer
    Long Phan
    Hieu Tran
    Le, Daniel
    Hieu Nguyen
    Anibal, James
    Peltekian, Alec
    Ye, Yanfang
    NLP4PROG 2021: THE 1ST WORKSHOP ON NATURAL LANGUAGE PROCESSING FOR PROGRAMMING (NLP4PROG 2021), 2021, : 40 - 47
  • [25] Scalable Multi-Query Execution using Reinforcement Learning
    Sioulas, Panagiotis
    Ailamaki, Anastasia
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 1651 - 1663
  • [26] Structured Multi-task Learning for Molecular Property Prediction
    Liu, Shengchao
    Qu, Meng
    Zhang, Zuobai
    Cai, Huiyu
    Tang, Jian
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [27] Water Quality Prediction Based on Multi-Task Learning
    Wu, Huan
    Cheng, Shuiping
    Xin, Kunlun
    Ma, Nian
    Chen, Jie
    Tao, Liang
    Gao, Min
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (15)
  • [28] MTFormer: Multi-task Learning via Transformer and Cross-Task Reasoning
    Xu, Xiaogang
    Zhao, Hengshuang
    Vineet, Vibhav
    Lim, Ser-Nam
    Torralba, Antonio
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 304 - 321
  • [29] Enhancement of acute toxicity prediction by multi-task learning
    Sosnin, Sergey
    Karlov, Dmitry
    Tetko, Igor
    Fedorov, Maxim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [30] Situation Aware Multi-Task Learning for Traffic Prediction
    Deng, Dingxiong
    Shahabi, Cyrus
    Demiryurek, Ugur
    Zhu, Linhong
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 81 - 90