共 50 条
Using Instrumental Variables to Measure Causation over Time in Cross-Lagged Panel Models
被引:0
|作者:
Singh, Madhurbain
[1
,2
,3
]
Verhulst, Brad
[4
]
Vinh, Philip
[1
,2
]
Zhou, Yi
[2
,5
]
Castro-de-Araujo, Luis F. S.
[2
]
Hottenga, Jouke-Jan
[3
,6
]
Pool, Rene
[3
,6
]
de Geus, Eco J. C.
[3
,6
]
Vink, Jacqueline M.
[7
]
Boomsma, Dorret I.
[3
,6
]
Maes, Hermine H. M.
[1
,2
]
Dolan, Conor V.
[3
,6
]
Neale, Michael C.
[1
,2
,3
,5
]
机构:
[1] Virginia Commonwealth Univ, Dept Human & Mol Genet, Richmond, VA USA
[2] Virginia Commonwealth Univ, Virginia Inst Psychiat & Behav Genet, Richmond, VA 23284 USA
[3] Vrije Univ Amsterdam, Dept Biol Psychol, Amsterdam, Netherlands
[4] Texas A&M Univ, Dept Psychiat & Behav Sci, College Stn, TX USA
[5] Virginia Commonwealth Univ, Dept Psychiat, Richmond, VA USA
[6] Amsterdam Publ Hlth Res Inst, Amsterdam, Netherlands
[7] Radboud Univ Nijmegen, Behav Sci Inst, Nijmege, Netherlands
基金:
美国国家卫生研究院;
关键词:
Causal inference;
instrumental variables;
CLPM;
lagged effects;
TOBACCO CO-USE;
MENDELIAN RANDOMIZATION;
USE DISORDERS;
ALCOHOL;
SMOKING;
INCREASES;
SYMPTOMS;
ADULTS;
IMPACT;
RISK;
D O I:
10.1080/00273171.2023.2283634
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Cross-lagged panel models (CLPMs) are commonly used to estimate causal influences between two variables with repeated assessments. The lagged effects in a CLPM depend on the time interval between assessments, eventually becoming undetectable at longer intervals. To address this limitation, we incorporate instrumental variables (IVs) into the CLPM with two study waves and two variables. Doing so enables estimation of both the lagged (i.e., "distal") effects and the bidirectional cross-sectional (i.e., "proximal") effects at each wave. The distal effects reflect Granger-causal influences across time, which decay with increasing time intervals. The proximal effects capture causal influences that accrue over time and can help infer causality when the distal effects become undetectable at longer intervals. Significant proximal effects, with a negligible distal effect, would imply that the time interval is too long to estimate a lagged effect at that time interval using the standard CLPM. Through simulations and an empirical application, we demonstrate the impact of time intervals on causal inference in the CLPM and present modeling strategies to detect causal influences regardless of the time interval in a study. Furthermore, to motivate empirical applications of the proposed model, we highlight the utility and limitations of using genetic variables as IVs in large-scale panel studies.
引用
收藏
页码:342 / 370
页数:29
相关论文