Multi-node wind speed forecasting based on a novel dynamic spatial-temporal graph network

被引:3
|
作者
Ma, Long [1 ,2 ]
Huang, Ling [1 ,2 ]
Shi, Huifeng [1 ,2 ]
机构
[1] North China Elect Power Univ, Inst Data Sci & Stat Anal, Baoding 071003, Hebei, Peoples R China
[2] Hebei Key Lab Phys & Energy Technol, Baoding 071003, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Wind speed forecasting; Spatial-temporal dependency; Graph sampling; Dynamic graph convolution; NEURAL-NETWORK; COMBINATION; MACHINE; ENERGY; POWER;
D O I
10.1016/j.energy.2023.129536
中图分类号
O414.1 [热力学];
学科分类号
摘要
Providing reliable and accurate wind speed predictions for the power system ensures a stable power output. However, the high wind speed uncertainty and the complex spatial-temporal correlation between wind turbines still make wind speed prediction a significant challenge. This paper proposes a novel dynamic spatial- temporal graph network (DSTGN) to make wind speed predictions by accurately capturing the dynamic dependencies of multi-turbine on an arbitrary graph structure. DSTGN adopts an extensible and serialized structure consisting of stacked dynamic spatial-temporal blocks to model dependencies. In spatial dependency extraction, a graph generation module is used in the spatial block to produce static and dynamic spatial information. A parameterized adjacency matrix expands the spatial hypothesis space rather than being limited by the distance between turbines. In temporal dependency extraction, the multi-head attention mechanism models temporal associations of diverse time horizons. Based on publicly available wind datasets, extensive experimental results showed that the proposed model significantly improves performance. Compared to recent state-of-the-art models, MAE, RMSE and MAPE are improved over 4.57%, 4.25% and 8.31%, respectively. Furthermore, through ablation studies, we verified the benefits of each component of the proposed model, especially the positive role of graph sampling in improving performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Network Representation Learning Method Based on Spatial-Temporal Graph in Dynamic Network
    Cheng, Xiaotao
    Ji, Lixin
    Yin, Ying
    Huang, Ruiyang
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 196 - 200
  • [22] Power load forecasting based on spatial-temporal fusion graph convolution network
    Jiang, He
    Dong, Yawei
    Dong, Yao
    Wang, Jianzhou
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2024, 204
  • [23] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    35th AAAI Conference on Artificial Intelligence, AAAI 2021, 2021, 17A : 15008 - 15015
  • [24] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80
  • [25] ST_AGCNT: Traffic Speed Forecasting Based on Spatial-Temporal Adaptive Graph Convolutional Network with Transformer
    Cheng, Rongjun
    Liu, Mengxia
    Xu, Yuanzi
    SUSTAINABILITY, 2025, 17 (05)
  • [26] Hybrid spatial-temporal graph neural network for traffic forecasting
    Wang, Peng
    Feng, Longxi
    Zhu, Yijie
    Wu, Haopeng
    INFORMATION FUSION, 2025, 118
  • [27] Traffic forecasting with graph spatial-temporal position recurrent network
    Chen, Yibi
    Li, Kenli
    Yeo, Chai Kiat
    Li, Keqin
    NEURAL NETWORKS, 2023, 162 : 340 - 349
  • [28] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15008 - 15015
  • [29] Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting
    Feng, Aosong
    Tassiulas, Leandros
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3933 - 3937
  • [30] DynGCN: A Dynamic Graph Convolutional Network Based on Spatial-Temporal Modeling
    Li, Jing
    Liu, Yu
    Zou, Lei
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT I, 2020, 12342 : 83 - 95