Unified model of lithium-ion battery and electrochemical storage system

被引:14
|
作者
Barcellona, Simone [1 ]
Colnago, Silvia [1 ]
Codecasa, Lorenzo [1 ]
Piegari, Luigi [1 ]
机构
[1] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
关键词
Lithium-ion battery; Battery electrical model; Electrochemical storage systems; Characterization procedure; PARAMETER-IDENTIFICATION; IMPEDANCE SPECTROSCOPY; ONLINE ESTIMATION; CHARGE; STATE; TEMPERATURE; RESISTANCE; CELLS;
D O I
10.1016/j.est.2023.109202
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nowadays, energy storage systems are of paramount importance in sectors such as renewable energy production and sustainable mobility because of the energy crisis and climate change issues. Although there are various types of energy storage systems, electrochemical devices such as electric double layer capacitors (EDLCs), lithium-ion capacitors (LiCs), and lithium-ion batteries (LiBs) are the most common because of their high efficiency and flexibility. In particular, LiBs are broadly employed in many applications and preferred in the mobility sector, where there is a need for high energy and high power. To ensure good operating conditions for a battery and limit its degradation, it is important to have a precise model of the device. The literature contains numerous equivalent circuit models capable of predicting the electrical behavior of an LiB in the time or frequency domain. In most of them, the battery impedance is in series with a voltage source modeling the open circuit voltage of the battery for simulation in the time domain. This study demonstrated that an extension of a model composed exclusively of passive elements from the literature for EDLCs and LiCs would also be suitable for LiBs, resulting in a unified model for these types of electrochemical storage systems. This model uses the finite space Warburg impedance, which, in addition to the diffusion process of lithium\lithium ions in the electrodes\electrolyte, makes it possible to consider the main capacitance of the battery. Finally, experimental tests were performed to validate the proposed model.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Optimal Experimental Design for Parameterization of an Electrochemical Lithium-Ion Battery Model
    Park, Saehong
    Kato, Dylan
    Gima, Zach
    Klein, Reinhardt
    Moura, Scott
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (07) : A1309 - A1323
  • [22] A REDUCED-ORDER ELECTROCHEMICAL MODEL OF LITHIUM-ION CELLS FOR SYSTEM IDENTIFICATION OF BATTERY AGING
    Marcicki, James
    Rizzoni, Giorgio
    Conlisk, A. T.
    Canova, Marcello
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE AND BATH/ASME SYMPOSIUM ON FLUID POWER AND MOTION CONTROL (DSCC 2011), VOL 2, 2012, : 709 - 716
  • [23] Lifetime Management Method of Lithium-ion battery for Energy Storage System
    Won, Il-Kuen
    Kim, Do-Yun
    Hwang, Jun-Ha
    Lee, Jung-Hyo
    Won, Chung-Yuen
    2015 18TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2015, : 1375 - 1380
  • [24] Thermal component for an electrochemical lithium-Ion battery model: Impact and variation on the battery performance
    Ardani, M., I
    Ab Wahid, M.
    Ab Talib, M. H.
    Daud, Z. H. Che
    Asus, Z.
    Ariff, M. A. M.
    MATERIALS TODAY-PROCEEDINGS, 2021, 39 : 1006 - 1009
  • [25] Sizing and Economic Analysis of Lithium-ion Battery Energy Storage System
    Xiu, Xiaoqing
    Li, Jianlin
    Hui, Dong
    ADVANCES IN ENERGY SCIENCE AND TECHNOLOGY, PTS 1-4, 2013, 291-294 : 627 - 631
  • [26] A Scheduling Model of Household Application with a Battery Storage System Based on Charge/Discharge Characteristics of Lithium-ion Battery
    Yang, Feifei
    Ke, Shaoyong
    Huang, Xiankun
    Liu, Yongzhong
    PRES2016: 19TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELING AND OPTIMIZATION FOR ENERGY SAVINGS AND POLLUTION REDUCTION, 2016, 52 : 43 - 48
  • [27] Lifetime Management Method of Lithium-ion battery for Energy Storage System
    Won, Il-Kuen
    Choo, Kyoung-Min
    Lee, Soon-Ryung
    Lee, Jung-Hyo
    Won, Chung-Yuen
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (03) : 1173 - 1184
  • [28] An Adaptable Lithium-Ion Battery Model
    Parfitt, C. E.
    Crofts, W. E.
    Buckle, R.
    BATTERIES FOR RENEWABLE ENERGY STORAGE, 2010, 28 (22): : 21 - 33
  • [29] Electrochemical energy storage: The lithium-ion batteries
    Billaud, D
    REWAS'99 GLOBAL SYMPOSIUM ON RECYCLING, WASTE TREATMENT AND CLEAN TECHNOLOGY VOLUME I-III, 1999, : 1969 - 1977
  • [30] Cyclotetrabenzil Derivatives for Electrochemical Lithium-Ion Storage
    Meng, Jianing
    Robles, Alexandra
    Jalife, Said
    Ren, Wen
    Zhang, Ye
    Zhao, Lihong
    Liang, Yanliang
    Wu, Judy I.
    Miljanic, Ognjen S.
    Yao, Yan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (29)