Absorbing games with irrational values

被引:1
|
作者
Oliu-Barton, Miquel [1 ]
Vigeral, Guillaume [1 ]
机构
[1] Univ Paris Dauphine PSL, CNRS, CEREMADE, Paris, France
关键词
Limit value; Orderfield; Stochastic game; Zero-sum; Asymptotic behavior; STOCHASTIC GAMES;
D O I
10.1016/j.orl.2023.09.006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Many classes of two-player zero-sum stochastic games have the orderfield property; that is, if all payoffs and transitions belong to some field, so does the limit value. Is it also the case for absorbing games? No: In this note, we exhibit m x m absorbing games with rational data whose limit values are algebraic of degree m, for each m E N*. Furthermore, we provide maximal conditions for the orderfield property to hold, namely if transitions are deterministic and one player has at most two actions. Last, we prove that any algebraic number of degree 2 is the limit value of a 2 x 2 absorbing game, which leads to the conjecture that any algebraic number of degree m is the limit value of an m x m absorbing game.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:555 / 559
页数:5
相关论文
共 50 条
  • [41] Values for Restricted Games with Externalities
    M. Josune Albizuri
    Satoshi Masuya
    José M. Zarzuelo
    Group Decision and Negotiation, 2024, 33 : 351 - 369
  • [42] Values at play in digital games
    Paul, Christopher A.
    NEW MEDIA & SOCIETY, 2016, 18 (06) : 1053 - 1054
  • [43] Rankings and values for team games
    L. Hernández-Lamoneda
    F. Sánchez-Sánchez
    International Journal of Game Theory, 2010, 39 : 319 - 350
  • [44] ON VALUES OF REPEATED GAMES WITH SIGNALS
    Gimbert, Hugo
    Renault, Jerome
    Sorin, Sylvain
    Venel, Xavier
    Zielonka, Wieslaw
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (01): : 402 - 424
  • [45] ECONOMIC POWER AND VALUES OF GAMES
    ALLINGHAM, MG
    ZEITSCHRIFT FUR NATIONALOKONOMIE-JOURNAL OF ECONOMICS, 1975, 35 (3-4): : 293 - 299
  • [46] Semiproportional values for TU games
    Anna B. Khmelnitskaya
    Theo S. H. Driessen
    Mathematical Methods of Operations Research, 2003, 57 : 495 - 511
  • [47] Refinement derivatives and values of games
    Montrucchio, Luigi
    Semeraro, Patrizia
    MATHEMATICS OF OPERATIONS RESEARCH, 2008, 33 (01) : 97 - 118
  • [48] "Procedural" values for cooperative games
    Malawski, Marcin
    INTERNATIONAL JOURNAL OF GAME THEORY, 2013, 42 (01) : 305 - 324
  • [49] Semiproportional values for TU games
    Khmelnitskaya, AB
    Driessen, TSH
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2003, 57 (03) : 495 - 511
  • [50] UPPER VALUES OF DIFFERENTIAL GAMES
    ELLIOTT, RJ
    KALTON, NJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (01) : 89 - 100