Combined analyses of transcriptome and metabolome reveal the mechanism of exogenous strigolactone regulating the response of elephant grass to drought stress

被引:4
|
作者
Zhou, Jing [1 ]
Liu, Yijia [1 ,2 ]
Li, Yan [1 ,2 ]
Ling, Wenqing [2 ]
Fan, Xiaoyu [1 ,2 ]
Feng, Qixian [2 ]
Ming, Ray [3 ]
Yang, Fulin [2 ]
机构
[1] Fujian Agr & Forestry Univ, Natl Engn Res Ctr Juncao Technol, Fuzhou, Peoples R China
[2] Fujian Agr & Forestry Univ, Coll Anim Sci, Coll Bee Sci, Fuzhou, Peoples R China
[3] Fujian Agr & Forestry Univ, Ctr Genom & Biotechnol, Fujian Prov Key Lab Haixia Appl Plant Syst Biol, Fuzhou, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2023年 / 14卷
基金
中国国家自然科学基金;
关键词
transcriptome; metabolome; exogenous strigolactone; drought resistance; SL crosstalk; elephant grass; TOLERANCE; MAIZE; ELONGATION; WITCHWEED; ENZYME; AUXIN;
D O I
10.3389/fpls.2023.1186718
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Elephant grass is widely used in feed production and ecological restoration because of its huge biomass and low occurrence of diseases and insect pets. However, drought seriously affects growth and development of this grass. Strigolactone (SL), a small molecular phytohormone, reportedly participates in improving resilience to cope with arid environment. But the mechanism of SL regulating elephant grass to response to drought stress remains unknown and needs further investigation. We conducted RNA-seq experiments and identified 84,296 genes including 765 and 2325 upregulated differential expression genes (DEGs) and 622 and 1826 downregulated DEGs, compared drought rehydration with spraying SL in roots and leaves, respectively. Combined with targeted phytohormones metabolite analysis, five hormones including 6-BA, ABA, MeSA, NAA, and JA had significant changes under re-watering and spraying SL stages. Moreover, a total of 17 co-expression modules were identified, of which eight modules had the most significant correlation with all physiological indicators with weighted gene co-expression network analysis. The venn analysis revealed the common genes between Kyoto Encyclopedia of Genes and Genomes enriched functional DEGs and the top 30 hub genes of higher weights in eight modules, respectively. Finally, 44 DEGs had been identified as key genes which played a major role in SL response to drought stress. After verification of its expression level by qPCR, six key genes in elephant grass including PpPEPCK, PpRuBPC, PpPGK, PpGAPDH, PpFBA, and PpSBPase genes regulated photosynthetic capacity under the SL treatment to respond to drought stress. Meanwhile, PpACAT, PpMFP2, PpAGT2, PpIVD, PpMCCA, and PpMCCB regulated root development and phytohormone crosstalk to respond to water deficit conditions. Our research led to a more comprehensive understanding about exogenous SL that plays a role in elephant grass response to drought stress and revealed insights into the SL regulating molecular mechanism in plants to adapt to the arid environment.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Physiological and transcriptome analyses of Chinese cabbage in response to drought stress
    Lin Chen
    Chao Li
    Jiahao Zhang
    Zongrui Li
    Qi Zeng
    Qingguo Sun
    Xiaowu Wang
    Limin Zhao
    Lugang Zhang
    Baohua Li
    Journal of Integrative Agriculture, 2024, 23 (07) : 2255 - 2269
  • [32] Physiological and transcriptome analyses of Chinese cabbage in response to drought stress
    Lin Chen
    Chao Li
    Jiahao Zhang
    Zongrui Li
    Qi Zeng
    Qingguo Sun
    Xiaowu Wang
    Limin Zhao
    Lugang Zhang
    Baohua Li
    Journal of Integrative Agriculture, 2024, (07) : 2255 - 2269
  • [33] Physiological and transcriptome analyses of Opisthopappus taihangensis in response to drought stress
    Huihui Gu
    Yan Yang
    Minghui Xing
    Caipeng Yue
    Fang Wei
    Yanjie Zhang
    Wenen Zhao
    Jinyong Huang
    Cell & Bioscience, 9
  • [34] Physiological and transcriptome analyses of Chinese cabbage in response to drought stress
    Chen, Lin
    Li, Chao
    Zhang, Jiahao
    Li, Zongrui
    Zeng, Qi
    Sun, Qingguo
    Wang, Xiaowu
    Zhao, Limin
    Zhang, Lugang
    Li, Baohua
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2024, 23 (07) : 2255 - 2269
  • [35] Physiological and transcriptome analyses of Opisthopappus taihangensis in response to drought stress
    Gu, Huihui
    Yang, Yan
    Xing, Minghui
    Yue, Caipeng
    Wei, Fang
    Zhang, Yanjie
    Zhao, Wenen
    Huang, Jinyong
    CELL AND BIOSCIENCE, 2019, 9 (1):
  • [36] Transcriptome and metabolome analyses reveal transcription factors regulating ganoderic acid biosynthesis in Ganoderma lucidum development
    Meng, Li
    Zhou, Ruyue
    Lin, Jialong
    Zang, Xizhe
    Wang, Qingji
    Wang, Panmeng
    Wang, Li
    Li, Zhuang
    Wang, Wei
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [37] Combined Transcriptome and Metabolome Analysis of Lupinus polyphyllus Response to PEG Stress
    Chai, Shujie
    Dong, Wenke
    Ma, Huiling
    AGRONOMY-BASEL, 2024, 14 (05):
  • [38] Integrative metabolome and transcriptome analyses reveal the mechanism by which white light increases apple phenolics
    Jin, Juntong
    Shen, Shurong
    Zhang, Lizhi
    Wang, Aide
    Yuan, Hui
    Tan, Dongmei
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2024, 208
  • [39] Integrative metabolome and transcriptome analyses reveal the coloration mechanism in Camellia oleifera petals with different color
    Zeng, Hai-Tao
    Zheng, Tao
    Tang, Qi
    Xu, Hao
    Chen, Mengjiao
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [40] Transcriptome and Metabolome Analyses Reveal Complex Molecular Mechanisms Involved in the Salt Tolerance of Rice Induced by Exogenous Allantoin
    Wang, Juan
    Li, Yingbo
    Wang, Yinxiao
    Du, Fengping
    Zhang, Yue
    Yin, Ming
    Zhao, Xiuqin
    Xu, Jianlong
    Yang, Yongqing
    Wang, Wensheng
    Fu, Binying
    ANTIOXIDANTS, 2022, 11 (10)