Hybrid Quantum Systems for Higher Temperature Quantum Information Processing

被引:1
|
作者
Miller, John H. H. [1 ,2 ]
Villagran, Martha Y. Suarez Y. [1 ,2 ]
Sanderson, Johnathan O. O. [1 ,2 ]
Wosik, Jarek [1 ,3 ]
机构
[1] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
[2] Univ Houston, Dept Phys, Houston, TX 77204 USA
[3] Univ Houston, UH Dept Elect & Comp Engn, Houston, TX 77204 USA
关键词
Qubit; Dielectrics; Inductance; Energy states; Superconducting transition temperature; Couplings; Voltage; quantum computing; qubit; superconducting devices; superconducting films; STATE;
D O I
10.1109/TASC.2023.3241131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ability to operate superconducting quantum computers at higher temperatures would greatly expand their utility and range of applications. This could be achieved by increasing resonance frequencies and/or utilizing collective modes that are less noisy and more robust against decoherence. We discuss several nonlinear resonator concepts in which the roles of linear and nonlinear elements are reversed vs. the transmon. The simplest version is a nonlinear LC resonator with a linear superconducting inductor and a nonlinear capacitor employing a nonlinear dielectric material. Due to progress in tunable dielectrics for 6G, some ferroelectric composites may enable operation of a nonlinear dielectric - superconductor qubit at hundreds of gigahertz. Other nonlinear dielectric materials include quantum paraelectrics and charge density wave materials. These are of interest due to robust collective modes resulting from macroscopically occupied states. Other proposed nonlinear resonators employing nonlinear dielectrics include quarter- and half-wavelength resonators. Voltage tunability is a potential feature of the proposed concepts.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] The role of quantum memory in quantum information processing
    Nemoto, Kae
    Stephens, Ashley M.
    Devitt, Simon J.
    Harrison, Keith A.
    Munro, William J.
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING XI, 2013, 8875
  • [42] Quantum information processing and composite quantum fields
    Sanjaye Ramgoolam
    Michal Sedlák
    Journal of High Energy Physics, 2019
  • [43] Quantum optical implementation of quantum information processing
    Zoller, P
    Cirac, JI
    Duan, LM
    García-Ripoll, JJ
    QUANTUM ENTANGLEMENT AND INFORMATION PROCESSING, 2004, 79 : 187 - +
  • [44] Physics as Quantum Information Processing: Quantum Fields as Quantum Automata
    D'Ariano, Giacomo Mauro
    FOUNDATIONS OF PROBABILITY AND PHYSICS - 6, 2012, 1424 : 371 - 386
  • [45] Quantum information processing and quantum optics with circuit quantum electrodynamics
    Alexandre Blais
    Steven M. Girvin
    William D. Oliver
    Nature Physics, 2020, 16 : 247 - 256
  • [46] Quantum information theory and its application to quantum information processing
    Hirota, O
    CLEO(R)/PACIFIC RIM 2001, VOL I, TECHNICAL DIGEST, 2001, : 626 - 627
  • [47] Quantum information processing and quantum optics with circuit quantum electrodynamics
    Blais, Alexandre
    Girvin, Steven M.
    Oliver, William D.
    NATURE PHYSICS, 2020, 16 (03) : 247 - 256
  • [48] Entanglement in General Multipartite Quantum Systems and Its Role in Quantum Information Processing Tasks
    Gielerak, Roman
    COMPUTER NETWORKS, 2010, 79 : 15 - 28
  • [49] Information scrambling at finite temperature in local quantum systems
    Sahu, Subhayan
    Swingle, Brian
    PHYSICAL REVIEW B, 2020, 102 (18)
  • [50] VECSEL systems for quantum information processing with trapped beryllium ions
    Burd, S. C.
    Penttinen, J. -P.
    Hou, P. -Y.
    Knaack, H. M.
    Ranta, S.
    Maki, M.
    Kantola, E.
    Guina, M.
    Slichter, D. H.
    Leibfried, D.
    Wilson, A. C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (04) : 773 - 781