Image inpainting algorithm based on tensor decomposition and weighted nuclear norm

被引:4
|
作者
Liu, Xuya [1 ]
Hao, Caiyan [2 ]
Su, Zezhao [3 ]
Qi, Zerong [4 ]
Fu, Shujun [5 ]
Li, Yuliang [6 ]
Han, Hongbin [7 ,8 ]
机构
[1] Shandong Jianzhu Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China
[2] Qingdao Hiimage Technol Co Ltd, Qingdao 266000, Peoples R China
[3] Guangdong Technion Israel Inst Technol, Shantou 515063, Peoples R China
[4] Shandong Chengshi Elect Technol Ltd Co, Jinan 250031, Peoples R China
[5] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[6] Shandong Univ, Dept Intervent Med, Hosp 2, Jinan 250100, Peoples R China
[7] Peking Univ Third Hosp, Dept Radiol, Beijing 100089, Peoples R China
[8] Beijing Key Lab Magnet Resonance Imaging Equipmen, Beijing 100089, Peoples R China
基金
中国国家自然科学基金;
关键词
Image inpainting; Low-rank approximation; Nonlocal similarity; Tensor completion; Tensor ring decomposition; MATRIX COMPLETION;
D O I
10.1007/s11042-022-12635-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a damaged image, recovering an image with missing entire rows or columns is a challenging problem arising in many real applications, such as digital image inpainting. For this kind of information missing situation, the diffusion-based inpainting methods are tend to produce blur, the exemplar-based methods are prone to error filling and the neural network-based methods are highly dependent on data. Many existing approaches formulate this problem as a general low-rank matrix approximate one which cannot handle this special structural missing very well. In this paper, we propose a novel image inpainting algorithm named nonlocal low-rank tensor completion (NLLRTC) based on the nonlocal self-similarity prior and the low-rank prior. By using the nonlocal self-similarity of image patches, we directly stack these patches into a three-dimensional similar tensor instead of pulling them into column vectors, then the similar tensor can be completed by tensor ring (TR) decomposition. By leveraging the alternating direction method under the augmented Lagrangian multiplier framework, the optimization results can be obtained. Moreover, a weighted nuclear norm is added to the tensor completion model to achieve better inpainting performance, which we call weighted nonlocal low-rank tensor completion (WNLLRTC) algorithm. Our empirical studies show encouraging results on both quantitative assessment and visual interpretation of our proposed methods in comparison to some state-of-the-art algorithms.
引用
收藏
页码:3433 / 3458
页数:26
相关论文
共 50 条
  • [31] Dunhuang Murals Inpainting Based on Image Decomposition
    Huang Wei
    Wang Shuwen
    ICCSIT 2010 - 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2010, : 397 - 400
  • [32] Image Inpainting Based on Improved Tensor Diffusion Model
    Cui Xuehong
    Pan Zhenkuan
    Wei Weibo
    ICCSE 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2008, : 833 - 837
  • [33] Quaternion-based weighted nuclear norm minimization for color image denoising
    Yu, Yibin
    Zhang, Yulan
    Yuan, Shifang
    NEUROCOMPUTING, 2019, 332 : 283 - 297
  • [34] Sobel Edge Detection Based on Weighted Nuclear Norm Minimization Image Denoising
    Tian, Run
    Sun, Guiling
    Liu, Xiaochao
    Zheng, Bowen
    ELECTRONICS, 2021, 10 (06) : 1 - 15
  • [35] Weighted Nuclear Norm Minimization-Based Regularization Method for Image Restoration
    Yu-Mei Huang
    Hui-Yin Yan
    Communications on Applied Mathematics and Computation, 2021, 3 : 371 - 389
  • [36] Patches Based Multichannel Weighted Nuclear Norm Prior for Color Image Denoising
    Li, Li
    Shen, Xiaohong
    Gao, Shanshan
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5285 - 5289
  • [37] Weighted Nuclear Norm Minimization with Application to Image Denoising
    Gu, Shuhang
    Zhang, Lei
    Zuo, Wangmeng
    Feng, Xiangchu
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2862 - 2869
  • [38] Quaternion-based weighted nuclear norm minimization for color image restoration
    Huang, Chaoyan
    Li, Zhi
    Liu, Yubing
    Wu, Tingting
    Zeng, Tieyong
    PATTERN RECOGNITION, 2022, 128
  • [39] Weighted Nuclear Norm Minimization-Based Regularization Method for Image Restoration
    Huang, Yu-Mei
    Yan, Hui-Yin
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (03) : 371 - 389
  • [40] Tensor-Based Weighted Least Square Decomposition Haze Removal Algorithm
    Jin, Xin
    Wang, Xiaotong
    Xu, Xiaogang
    Yi, Chengtao
    Yang, Changqing
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 1097 - 1101