Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms

被引:72
|
作者
Chang, Victor [1 ]
Bailey, Jozeene [2 ]
Xu, Qianwen Ariel [2 ]
Sun, Zhili [3 ]
机构
[1] Aston Univ, Aston Business Sch, Dept Operat & Informat Management, Birmingham, W Midlands, England
[2] Teesside Univ, Sch Comp & Digital Technol, Cybersecur Informat Syst & AI Res Grp, Middlesbrough, Cleveland, England
[3] Univ Surrey, Inst Commun Syst ICS, 5G & 6G Innovat Ctr 5G & 6GIC, Guildford, Surrey, England
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 22期
关键词
Diabetes mellitus; The Internet of Medical Things (IoMT); Machine learning; Interpretable artificial intelligence; DIAGNOSIS; INTERNET;
D O I
10.1007/s00521-022-07049-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an e-diagnosis system based on machine learning (ML) algorithms to be implemented on the Internet of Medical Things (IoMT) environment, particularly for diagnosing diabetes mellitus (type 2 diabetes). However, the ML applications tend to be mistrusted because of their inability to show the internal decision-making process, resulting in slow uptake by end-users within certain healthcare sectors. This research delineates the use of three interpretable supervised ML models: Naive Bayes classifier, random forest classifier, and J48 decision tree models to be trained and tested using the Pima Indians diabetes dataset in R programming language. The performance of each algorithm is analyzed to determine the one with the best accuracy, precision, sensitivity, and specificity. An assessment of the decision process is also made to improve the model. It can be concluded that a Naive Bayes model works well with a more fine-tuned selection of features for binary classification, while random forest works better with more features.
引用
收藏
页码:16157 / 16173
页数:17
相关论文
共 50 条
  • [21] Diagnosis and Classification of the Diabetes Using Machine Learning Algorithms
    Theerthagiri P.
    Ruby A.U.
    Vidya J.
    SN Computer Science, 4 (1)
  • [22] Machine learning based study for the classification of Type 2 diabetes mellitus subtypes
    Nelson E. Ordoñez-Guillen
    Jose Luis Gonzalez-Compean
    Ivan Lopez-Arevalo
    Miguel Contreras-Murillo
    Edwin Aldana-Bobadilla
    BioData Mining, 16
  • [23] Machine learning based study for the classification of Type 2 diabetes mellitus subtypes
    Ordonez-Guillen, Nelson E.
    Gonzalez-Compean, Jose Luis
    Lopez-Arevalo, Ivan
    Contreras-Murillo, Miguel
    Aldana-Bobadilla, Edwin
    BIODATA MINING, 2023, 16 (01)
  • [24] Random Oversampling-Based Diabetes Classification via Machine Learning Algorithms
    Ashisha, G. R.
    Mary, X. Anitha
    Kanaga, E. Grace Mary
    Andrew, J.
    Eunice, R. Jennifer
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [25] Breastfeeding and incidence of non-insulin-dependent diabetes mellitus in Pima Indians
    Pettitt, DJ
    Forman, MR
    Hanson, RL
    Knowler, WC
    Bennett, PH
    LANCET, 1997, 350 (9072): : 166 - 168
  • [26] Non insulin dependent diabetes mellitus and obesity in Mexican Pima Indians.
    Valencia, ME
    Esparza, J
    Ravussin, E
    Bennett, PH
    Fox, C
    Schulz, L
    DIABETOLOGIA, 1997, 40 : 53 - 53
  • [27] Birth weight and renal disease in Pima Indians with type 2 diabetes mellitus
    Nelson, RG
    Morgenstern, H
    Bennett, PH
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1998, 148 (07) : 650 - 656
  • [28] ASYMPTOMATIC PAROTID ENLARGEMENT IN PIMA INDIANS - RELATIONSHIP TO AGE, OBESITY, AND DIABETES MELLITUS
    LEVINE, SB
    SAMPLINER, RE
    BENNETT, PH
    RUSHFORTH, NB
    BURCH, TA
    MILLER, M
    ANNALS OF INTERNAL MEDICINE, 1970, 73 (04) : 571 - +
  • [29] In utero exposure to diabetes mellitus impairs insulin secretion in adult Pima Indians
    Namata, G
    Gautier, JF
    Hanson, R
    Pratley, RE
    Bogardus, C
    Tataranni, PA
    DIABETES, 2001, 50 : A385 - A385
  • [30] Prediction of renal insufficiency in Pima Indians with nephropathy of type 2 diabetes mellitus
    Goldfarb-Rumyantzev, AS
    Pappas, L
    AMERICAN JOURNAL OF KIDNEY DISEASES, 2002, 40 (02) : 252 - 264