Richtmyer-Meshkov instability with a rippled reshock

被引:2
|
作者
Zhang, Yumeng [1 ]
Zhao, Yong [1 ]
Ding, Juchun [1 ]
Luo, Xisheng [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Mech, Adv Prop Lab, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
shock waves; shear-flow instability; RAYLEIGH-TAYLOR; GROWTH-RATE; SHOCK; DRIVEN; INTERFACE; PLANAR;
D O I
10.1017/jfm.2023.491
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The reshocked Richtmyer-Meshkov instability (RMI) is examined in three different configurations via shock-tube experiments: RMI at a single-mode interface with a planar reshock (configuration I); RMI at a flat interface with a sinusoidal reshock (configuration II); RMI at a single-mode interface with a sinusoidal reshock (configuration III). The sinusoidal reshock is created by an incident shock reflecting off a sine-shaped wall surface. For all three configurations, the initial conditions of the experiment are specially set such that the interface evolution is at the linear stage when the reshock arrives. It is found that the amplitude of the reshocked interface increases linearly with time for all three configurations. For configuration I, the post-reshock perturbation growth depends heavily on the pre-reshock amplitude and growth rate, which can be predicted by a modified Mikaelian model (Phys. Rev. A, vol. 31, 1985, pp. 410-419). For configuration II, velocity perturbation associated with the non-uniform rippled reshock plays an important role in the instability growth. For configuration III, the post-reshock instability growth is much quicker (lower) than in configuration I when the sinusoidal reshock is in phase (out of phase) with the interface. A major reason is that for the in-phase (anti-phase) case, the velocity perturbation gives rise to an instability growth with an identical (opposite) direction to the pressure perturbation. A linear theory is developed that takes velocity perturbation, pressure perturbation and pre-reshock growth rate into account, which gives a reasonable prediction of the growth of the reshocked RMI in configurations II and III.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Scalar Power Spectra and Scalar Structure Function Evolution in the Richtmyer-Meshkov Instability Upon Reshock
    Noble, Christopher D.
    Herzog, Josh M.
    Rothamer, David A.
    Ames, Alex M.
    Oakley, Jason
    Bonazza, Riccardo
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [32] Nonlinear evolution of the Richtmyer-Meshkov instability
    Herrmann, Marcus
    Moin, Parviz
    Abarzhi, Snezhana I.
    JOURNAL OF FLUID MECHANICS, 2008, 612 (311-338) : 311 - 338
  • [33] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun MA Yanwen ZHANG Linbo TIAN BaolinState Key Laboratory of Nonlinear Mechanics Institute of Mechanics Chinese Academy of Sciences Beijing China
    State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004(S1) (S1) : 234 - 244
  • [34] Theory of the ablative Richtmyer-Meshkov instability
    Goncharov, VN
    PHYSICAL REVIEW LETTERS, 1999, 82 (10) : 2091 - 2094
  • [35] Startup process in the Richtmyer-Meshkov instability
    Lombardini, M.
    Pullin, D. I.
    PHYSICS OF FLUIDS, 2009, 21 (04)
  • [36] Richtmyer-Meshkov instability and the dynamics of the magnetosphere
    Wu, CC
    Roberts, PH
    GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (06) : 655 - 658
  • [37] Relativistic effects on the Richtmyer-Meshkov instability
    Mohseni, F.
    Mendoza, M.
    Succi, S.
    Herrmann, H. J.
    PHYSICAL REVIEW D, 2014, 90 (12):
  • [38] Richtmyer-Meshkov Instability of Laminar Flame
    Tyaktev, A. A.
    Pavlenko, A., V
    Anikin, N. B.
    Bugaenko, I. L.
    Piskunov, Yu A.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2020, 61 (02) : 157 - 161
  • [39] Richtmyer-Meshkov Instability in Nonlinear Optics
    Jia, Shu
    Huntley, Laura I.
    Fleischer, Jason W.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [40] Scaling the incompressible Richtmyer-Meshkov instability
    Cotrell, David L.
    Cook, Andrew W.
    PHYSICS OF FLUIDS, 2007, 19 (07)