Transfer learning-based ensemble convolutional neural network for accelerated diagnosis of foot fractures

被引:8
|
作者
Kim, Taekyeong [1 ]
Goh, Tae Sik [2 ]
Lee, Jung Sub [2 ]
Lee, Ji Hyun [3 ]
Kim, Hayeol [1 ]
Jung, Im Doo [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Mech Engn, Ulsan 44919, South Korea
[2] Pusan Natl Univ, Pusan Natl Univ Hosp, Biomed Res Inst, Dept Orthopaed Surg,Sch Med, Busan 49241, South Korea
[3] Hlth Insurance Review & Assessment Serv, Wonju 26465, South Korea
基金
新加坡国家研究基金会;
关键词
Artificial intelligence; Convolutional neural network; Ensemble method; Fractures; X-ray radiography;
D O I
10.1007/s13246-023-01215-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The complex shape of the foot, consisting of 26 bones, variable ligaments, tendons, and muscles leads to misdiagnosis of foot fractures. Despite the introduction of artificial intelligence (AI) to diagnose fractures, the accuracy of foot fracture diagnosis is lower than that of conventional methods. We developed an AI assistant system that assists with consistent diagnosis and helps interns or non-experts improve their diagnosis of foot fractures, and compared the effectiveness of the AI assistance on various groups with different proficiency. Contrast-limited adaptive histogram equalization was used to improve the visibility of original radiographs and data augmentation was applied to prevent overfitting. Preprocessed radiographs were fed to an ensemble model of a transfer learning-based convolutional neural network (CNN) that was developed for foot fracture detection with three models: InceptionResNetV2, MobilenetV1, and ResNet152V2. After training the model, score class activation mapping was applied to visualize the fracture based on the model prediction. The prediction result was evaluated by the receiver operating characteristic (ROC) curve and its area under the curve (AUC), and the F1-Score. Regarding the test set, the ensemble model exhibited better classification ability (F1-Score: 0.837, AUC: 0.95, Accuracy: 86.1%) than other single models that showed an accuracy of 82.4%. With AI assistance for the orthopedic fellow, resident, intern, and student group, the accuracy of each group improved by 3.75%, 7.25%, 6.25%, and 7% respectively and diagnosis time was reduced by 21.9%, 14.7%, 24.4%, and 34.6% respectively.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 50 条
  • [21] A transfer learning-based novel fusion convolutional neural network for breast cancer histology classification
    Yu, Xiangchun
    Chen, Hechang
    Liang, Miaomiao
    Xu, Qing
    He, Lifang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (09) : 11949 - 11963
  • [22] An Optimized Convolutional Neural Network Architecture Based on Evolutionary Ensemble Learning
    Zainel, Qasim M.
    Khorsheed, Murad B.
    Darwish, Saad
    Ahmed, Amr A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3813 - 3828
  • [23] Solar radiation forecasting based on convolutional neural network and ensemble learning
    Cannizzaro, Davide
    Aliberti, Alessandro
    Bottaccioli, Lorenzo
    Macii, Enrico
    Acquaviva, Andrea
    Patti, Edoardo
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 181
  • [24] Mineral prospectivity prediction based on convolutional neural network and ensemble learning
    He, Hujun
    Zhu, Haolei
    Yang, Xingke
    Zhang, Weiwei
    Wang, Jinghao
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] An ensemble learning framework for convolutional neural network based on multiple classifiers
    Yanyan Guo
    Xin Wang
    Pengcheng Xiao
    Xinzheng Xu
    Soft Computing, 2020, 24 : 3727 - 3735
  • [26] An ensemble learning framework for convolutional neural network based on multiple classifiers
    Guo, Yanyan
    Wang, Xin
    Xiao, Pengcheng
    Xu, Xinzheng
    SOFT COMPUTING, 2020, 24 (05) : 3727 - 3735
  • [27] Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
    Xu, Gaowei
    Liu, Min
    Jiang, Zhuofu
    Soeffker, Dirk
    Shen, Weiming
    SENSORS, 2019, 19 (05)
  • [28] An intelligent flower classification framework: optimal hybrid flower pattern extractor with adaptive dynamic ensemble transfer learning-based convolutional neural network
    Anand, M. Suresh
    Swaroopa, Korla
    Nainwal, Manoj
    Therasa, M.
    IMAGING SCIENCE JOURNAL, 2024, 72 (01): : 52 - 75
  • [29] Deep Convolutional Neural Network Using Transfer Learning for Fault Diagnosis
    Zhang, Dong
    Zhou, Taotao
    IEEE ACCESS, 2021, 9 : 43889 - 43897
  • [30] Learning in Convolutional Neural Networks Accelerated by Transfer Entropy
    Moldovan, Adrian
    Cataron, Angel
    Andonie, Razvan
    ENTROPY, 2021, 23 (09)