Modelling of free bubble growth with Interface Capturing Computational Fluid Dynamics

被引:16
|
作者
Giustini, Giovanni [1 ]
Issa, Raad I. [2 ]
机构
[1] Univ Manchester, Dept Mech Aerosp & Civil Engn, Manchester M1 3BB, Lancs, England
[2] Imperial Coll London, Mech Engn Dept, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
boiling; bubbles; Computational Fluid Dynamics (CFD); Volume of Fluid (VOF); FLOWS; EQUATIONS; VOLUME;
D O I
10.1007/s42757-022-0139-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents simulations of the growth of stationary and rising vapour bubbles in an extend pool of liquid using an Interface Capturing Computational Fluid Dynamics (CFD) methodology coupled with a method for simulating interfacial mass transfer at the vapour-liquid interface. The model enables mechanistic prediction of the local rate of phase change at the vapour-liquid interface and is applicable to realistic cases involving two-phase mixtures with large density ratios. The simulation methodology is based on the Volume of Fluid (VOF) representation of the flow, whereby an interfacial region in which mass transfer occurs is implicitly identified by a phase indicator, in this case the volume fraction of liquid, which varies from the value pertaining to the "bulk" liquid to the value of the bulk vapour. The novel methodology proposed here has been implemented using the Finite Volume framework and solution methods typical of "industrial" CFD practice embedded in the OpenFOAM CFD toolbox. Simulations are validated via comparison against experimental observations of spherical bubble growth in zero gravity and of the growth of a rising bubble in normal gravity. The validation cases represent a severe test for Interface Capturing methodologies due to large density ratios, the presence of strong interfacial evaporation and upward bubble rise motion. Agreement of simulation results with measurements available in the literature demonstrates that the methodology detailed herein is applicable to modelling bubble growth driven by phase-change in real fluids.
引用
收藏
页码:357 / 364
页数:8
相关论文
共 50 条
  • [11] Computational fluid dynamics modelling of jet fires
    Lewak, Michal
    Tepinski, Jaroslaw
    Lesiak, Piotr
    PRZEMYSL CHEMICZNY, 2022, 101 (05): : 324 - 329
  • [12] Computational fluid dynamics modelling in cardiovascular medicine
    Morris, Paul D.
    Narracott, Andrew
    von Tengg-Kobligk, Hendrik
    Soto, Daniel Alejandro Silva
    Hsiao, Sarah
    Lungu, Angela
    Evans, Paul
    Bressloff, Neil W.
    Lawford, Patricia V.
    Hose, D. Rodney
    Gunn, Julian P.
    HEART, 2016, 102 (01) : 18 - 28
  • [13] Modelling a biochemical reaction with computational fluid dynamics
    Generalis, SC
    Glover, GMC
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2005, 3
  • [14] Computational fluid dynamics - modelling in the aluminium industry
    Zach, O
    Gamweger, K
    Advances in Refractories for the Metallurgical Industries IV, 2004, : 397 - 406
  • [15] Computational fluid dynamics and virtual aeroengine modelling
    Chew, J. W.
    Hills, N. J.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2009, 223 (12) : 2821 - 2834
  • [16] Computational fluid dynamics modelling of wood combustion
    Novozhilov, V
    Moghtaderi, B
    Fletcher, DF
    Kent, JH
    FIRE SAFETY JOURNAL, 1996, 27 (01) : 69 - 84
  • [17] Computational fluid dynamics modelling of a static mixer
    Clifford, MJ
    Simmons, KA
    Roberts, J
    Truscot, TD
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2006, 220 (03) : 325 - 332
  • [18] Progress in computational fluid dynamics for bioengineering modelling
    Cebral, Juan R.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2009, 23 (08) : 567 - 568
  • [19] An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics
    Schmidmayer, Kevin
    Bryngelson, Spencer H.
    Colonius, Tim
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 402
  • [20] Application of Computational Fluid Dynamics to Multiphase Flow in Bubble Columns
    Bertola, Francesco
    Vanni, Marco
    Baldi, Giancarlo
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2003, 1