Numerical investigation of natural circulation loop with supercritical CO2 on the thermal control system of micro spacecrafts

被引:4
|
作者
Gao, Zhigang [1 ,2 ]
Qiao, Keqiang [1 ,2 ]
Bai, Junhua [3 ]
Wang, Zhiqiang [1 ,2 ]
Liu, Hang [1 ,2 ]
Li, Peng [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Inst Precis Guidance & Control, Xian 710072, Peoples R China
[2] Natl Local Joint Engn Lab Microsatellite Technol &, Xian 710072, Peoples R China
[3] Xian Shiyou Univ, Coll Petr Engn, Xian 710065, Peoples R China
关键词
Micro spacecraft; Variable gravities; Natural circulation loop; Supercritical CO 2; Thermal performance; Friction factor; Flow correlation; HEAT-TRANSFER; STEADY-STATE; FLOW; CUBESAT; FLUIDS;
D O I
10.1016/j.ijheatmasstransfer.2023.124661
中图分类号
O414.1 [热力学];
学科分类号
摘要
Aiming at the heat dissipation problem under the strict constraints of mass, volume, and power consumption in micro spacecrafts, the feasibility of applying a natural circulation loop (NCL) to the thermal control system is performed for the CubeSats (Cube satellites) of orbiting operations or the micro-rovers of extraterrestrial explorations. A 3-dimensional NCL model under variable gravity conditions corresponding the environment of aerospace is established, and the supercritical CO2 as the coolant. The heat transfer and thermal performance of NCL under gravity range of 10-6 g to 10 g are analyzed numerically, including the Earth orbit, the surface of the Moon and the Mars etc. The calculation results present that the gravity has a great influence on the flow circulation characteristics and thermal performance of the NCL. The applicability of employing NCL on the thermal control system of micro spacecrafts is validated with the gravity no less than 0.05 g. It is worth noting that, by designing the range of temperature from inlet to outlet of the heated tube covering the large specific heat region, the superior thermal performance can be obtained on account of the strong heat-carrying capacity of supercritical fluid, even under the low gravity with a small mass flow rate. Finally, a flow correlation is proposed considering the effect of gravity, flow regime, buoyancy force, and geometric factors, which is suitable on the NCL in the thermal control system of micro spacecrafts, and the R2 is 99.77%.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Effect of system pressure on the steady state performance of a CO2 based natural circulation loop
    Kumar, K. Kiran
    Gopal, M. Ram
    APPLIED THERMAL ENGINEERING, 2009, 29 (16) : 3346 - 3352
  • [42] Heat transfer enhancement using CO2 in a natural circulation loop
    Thippeswamy, L. R.
    Yadav, Ajay Kumar
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [43] Heat transfer enhancement using CO2 in a natural circulation loop
    L. R. Thippeswamy
    Ajay Kumar Yadav
    Scientific Reports, 10
  • [44] Experimental investigation of supercritical carbon dioxide natural circulation in rectangular loop
    Liu, Guangxu
    Huang, Yanping
    Wang, Junfeng
    Zan, Yuanfeng
    Lang, Xuemei
    Hedongli Gongcheng/Nuclear Power Engineering, 2015, 36 (03): : 31 - 35
  • [45] Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop
    Conboy, T.
    Pasch, J.
    Fleming, D.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2013, 135 (11):
  • [46] Experimental and numerical investigation of supercritical CO2 test loop transient behavior near the critical point operation
    Bae, Seong Jun
    Ahn, Yoonhan
    Lee, Jekyoung
    Kim, Seong Gu
    Baik, Seungjoon
    Lee, Jeong Ik
    APPLIED THERMAL ENGINEERING, 2016, 99 : 572 - 582
  • [47] CONTROL OF A SUPERCRITICAL CO2 RECOMPRESSION BRAYTON CYCLE DEMONSTRATION LOOP
    Conboy, T.
    Pasch, J.
    Fleming, D.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 8, 2013,
  • [48] Numerical investigation of steady state characteristics and stability of supercritical water natural circulation loop of a heater and cooler arrangements
    Rai, Santosh Kumar
    Kumar, Pardeep
    Panwar, Vinay
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2021, 53 (11) : 3597 - 3611
  • [49] Numerical characterization of heat transfer deterioration in supercritical natural circulation loop and role of loop inclination
    Srivastava, Tanuj
    Basu, Dipankar N.
    NUCLEAR ENGINEERING AND DESIGN, 2022, 390
  • [50] NUMERICAL INVESTIGATION ON THE FLOW CHARACTERISTICS OF A SUPERCRITICAL CO2 CENTRIFUGAL COMPRESSOR
    Zhao, Hang
    Deng, Qinghua
    Zheng, Kuankuan
    Zhang, Hanzhen
    Feng, Zhenping
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 3B, 2014,