MCGAN: Modified Conditional Generative Adversarial Network (MCGAN) for Class Imbalance Problems in Network Intrusion Detection System

被引:12
|
作者
Babu, Kunda Suresh [1 ]
Rao, Yamarthi Narasimha [1 ]
机构
[1] VIT AP Univ, Sch Comp Sci & Engn, Amaravathi 522237, India
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 04期
关键词
intrusion detection system; deep convolution generative adversarial network; class imbalance problem; NSL-KDD dataset; accuracy; DEEP LEARNING APPROACH; ENSEMBLE; IDS;
D O I
10.3390/app13042576
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With developing technologies, network security is critical, predominantly active, and distributed ad hoc in networks. An intrusion detection system (IDS) plays a vital role in cyber security in detecting malicious activities in network traffic. However, class imbalance has triggered a challenging issue where many instances of some classes are more than others. Therefore, traditional classifiers suffer in classifying malicious activities and result in low robustness to unidentified glitches. This paper introduces a novel technique based on a modified conditional generative adversarial network (MCGAN) to address the class imbalance problem. The proposed MCGAN handles the class imbalance issue by generating oversamples to balance the minority and majority classes. Then, the Bi-LSTM technique is incorporated to classify the multi-class intrusion efficiently. This formulated model is experimented on using the NSL-KDD+ dataset with the aid of accuracy, precision, recall, FPR, and F-score to validate the efficacy of the proposed system. The simulation results of the proposed method are associated with other existing models. It achieved an accuracy of 95.16%, precision of 94.21%, FPR of 2.1%, and F1-score of 96.7% for the NSL-KDD+ dataset with 20 selected features.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Power system state estimation using conditional generative adversarial network
    He, Yi
    Chai, Songjian
    Xu, Zhao
    Lai, Chun Sing
    Xu, Xu
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (24) : 5823 - 5833
  • [42] Physics-Informed Conditional Generative Adversarial Network for Inverse Electromagnetic Problems
    Akbari, Amir
    Lowther, David
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [43] LATENT PRESERVING GENERATIVE ADVERSARIAL NETWORK FOR IMBALANCE CLASSIFICATION
    Dam, Tanmoy
    Ferdaus, Md Meftahul
    Pratama, Mahardhika
    Anavatti, Sreenatha G.
    Jayavelu, Senthilnath
    Abbass, Hussein
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3712 - 3716
  • [44] DUEN: Dynamic ensemble handling class imbalance in network intrusion detection
    Ren, Huajuan
    Tang, Yonghe
    Dong, Weiyu
    Ren, Shuai
    Jiang, Liehui
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 229
  • [45] Conveyor-Belt Detection of Conditional Deep Convolutional Generative Adversarial Network
    Hao, Xiaoli
    Meng, Xiaojuan
    Zhang, Yueqin
    Xue, JinDong
    Xia, Jinyue
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 2671 - 2685
  • [46] SALIENT OBJECT DETECTION WITH CAPSULE-BASED CONDITIONAL GENERATIVE ADVERSARIAL NETWORK
    Zhang, Chao
    Yang, Fei
    Qiu, Guoping
    Zhang, Qian
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 81 - 85
  • [47] Trajectory Prediction using Conditional Generative Adversarial Network
    Barbie, Thibault
    Nishida, Takeshi
    PROCEEDINGS OF THE 2017 INTERNATIONAL SEMINAR ON ARTIFICIAL INTELLIGENCE, NETWORKING AND INFORMATION TECHNOLOGY (ANIT 2017), 2017, 150 : 193 - 197
  • [48] Conditional generative adversarial network for gene expression inference
    Wang, Xiaoqian
    Dizaji, Kamran Ghasedi
    Huang, Heng
    BIOINFORMATICS, 2018, 34 (17) : 603 - 611
  • [49] Conditional Generative Adversarial Network for Structured Domain Adaptation
    Hong, Weixiang
    Wang, Zhenzhen
    Yang, Ming
    Yuan, Junsong
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1335 - 1344
  • [50] SpeakerGAN: Speaker identification with conditional generative adversarial network
    Chen, Liyang
    Liu, Yifeng
    Xiao, Wendong
    Wang, Yingxue
    Xie, Haiyong
    NEUROCOMPUTING, 2020, 418 : 211 - 220