Topological Data Structure: The Fast Marching Example

被引:0
|
作者
Toujja, Sofian [1 ]
Bay, Thierry [2 ]
Belhaouari, Hakim [1 ]
Fuchs, Laurent [1 ]
机构
[1] Univ Limoges, Univ Poitiers, XLIM, CNRS, Poitiers, France
[2] Univ Polytech Hauts De France, CERAMATHS, Valenciennes, France
来源
PROCEEDINGS OF THE 18TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2023 | 2023年
关键词
Topological Modeling; Generalized Map; Fast Marching Method; Front Propagation; Jerboa;
D O I
10.5220/0011686800003417
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article lies in the field of front propagation algorithms on a surface represented by triangle meshes. An implementation of the fast marching algorithm using a topological structure, the generalized maps or g-maps, as the data structure of the mesh is presented. G-maps have the advantage of allowing to store and retrieve information related to the neighborhood of a cell. In this article, the necessary knowledge about generalized maps and the fast marching method are reviewed in order to facilitate the understanding of the proposed implementation and the benefits brought by g-maps as underlying data structure. Then some various applications of this implementation are presented.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 50 条
  • [31] Practical considerations on Marching Cubes 33 topological correctness
    Custodio, Lis
    Etiene, Tiago
    Pesco, Sinesio
    Silva, Claudio
    COMPUTERS & GRAPHICS-UK, 2013, 37 (07): : 840 - 850
  • [32] An example of a topological group
    Krawczyk, A
    Michalewski, H
    TOPOLOGY AND ITS APPLICATIONS, 2003, 127 (03) : 325 - 330
  • [33] Curve matching using the fast Marching Method
    Frenkel, M
    Basri, R
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 2003, 2683 : 35 - 51
  • [34] Fast marching the global minimum of active contours
    Cohen, LD
    Kimmel, R
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL I, 1996, : 473 - 476
  • [35] Redundancy in all pairs fast marching method
    Bertelli, Luca
    Sumengen, Baris
    Manjunath, B. S.
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 3033 - +
  • [36] A fast marching algorithm for the factored eikonal equation
    Treister, Eran
    Haber, Eldad
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 324 : 210 - 225
  • [37] Fast Estimation of Recombination Rates Using Topological Data Analysis
    Humphreys, Devon P.
    McGuirl, Melissa R.
    Miyagi, Michael
    Blumberg, Andrew J.
    GENETICS, 2019, 211 (04) : 1191 - 1204
  • [38] A GENERALIZED FAST MARCHING METHOD FOR DISLOCATION DYNAMICS
    Carlini, Elisabetta
    Forcadel, Nicolas
    Monneau, Regis
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2470 - 2500
  • [39] Adaptation of fast marching methods to intracellular signaling
    Chikando, Aristide C.
    Kinser, Jason M.
    COMPUTATIONAL IMAGING IV, 2006, 6065
  • [40] Generalizing and Processing Topological Data using Sentence Data Structure
    Kim, San
    Joo, Eunjung
    Ha, Jusung
    Kim, Jaekwang
    PROCEEDINGS OF THE 2021 15TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2021), 2021,