Electrically Controlled Quantum Transition to an Anomalous Metal in 2D

被引:0
|
作者
Halder, Soumyadip [1 ]
Garg, Mona [1 ]
Gawande, Shreekant [1 ]
Mehta, Nikhlesh Singh [1 ]
Kumari, Anamika [2 ]
Chakraverty, Suvankar [2 ]
Kumar, Sanjeev [1 ]
Sheet, Goutam [1 ,3 ]
机构
[1] Indian Inst Sci Educ & Res IISER Mohali, Dept Phys Sci, Manauli 140306, India
[2] Inst Nano Sci & Technol, Quantum Mat & Devices Unit, Mohali 140306, Punjab, India
[3] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
关键词
oxide; 2DEGs; LaVO3/SrTiO3; interfaces; superconductivity; anomalous metal; ferroelectricity; network-resistor model; SUPERCONDUCTIVITY;
D O I
10.1021/acsaelm.3c00624
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The mechanism through which superconductivity is destroyed upon controlled disordering often holds the key to understanding the mechanism of the emergence of superconductivity. Here, we demonstrate an in-situ mechanism to control the fraction of disorder in a 2D superconductor. By controlling an electric field V (G), we created an assembly of segregated superconducting nano-islands and varied the interisland distance to accomplish a quantum phase transition from a superconducting phase to a strange quantum anomalous metallic (QAM) phase at LaVO3/SrTiO3 interfaces. In the QAM phase, the resistivity dropped below a critical temperature (T (CM)) as if the system was approaching superconductivity and then saturated, indicating the destruction of global phase coherence and the emergence of a phase where metal-like transport of Bosons (a Bose metal) becomes a possibility. The unprecedented control over the island size is obtained through the control of nanometer-scale ferroelectric domains formed in the SrTiO3 side of the interface due to a low-temperature structural phase transition.
引用
收藏
页码:5446 / 5452
页数:7
相关论文
共 50 条
  • [1] The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides
    Sun, Jiaxiang
    Zhong, Xin
    Cui, Wenwen
    Shi, Jingming
    Hao, Jian
    Xu, Meiling
    Li, Yinwei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (04) : 2429 - 2436
  • [2] Metal-insulator transition in 2D as a quantum phase transition
    Geldart, D. J. W.
    Neilson, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (21)
  • [3] 2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material
    Shahzad, Faisal
    Iqbal, Aamir
    Kim, Hyerim
    Koo, Chong Min
    ADVANCED MATERIALS, 2020, 32 (51)
  • [4] Electrically tunable valleytronics in quantum anomalous Hall insulating transition metal trihalides
    Li, Yang
    Liu, Yizhou
    Wang, Chong
    Wang, Jianfeng
    Xu, Yong
    Duan, Wenhui
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [5] Anomalous Quantum Metal in a 2D Crystalline Superconductor with Electronic Phase Nonuniformity
    Li, Linjun
    Chen, Chuan
    Watanabe, Kenji
    Taniguchi, Takashi
    Zheng, Yi
    Xu, Zhuan
    Pereira, Vitor M.
    Loh, Kian Ping
    Neto, Antonio H. Castro
    NANO LETTERS, 2019, 19 (06) : 4126 - 4133
  • [6] Electrically Tunable Quantum Anomalous Hall Effect in Graphene Decorated by 5d Transition-Metal Adatoms
    Zhang, Hongbin
    Lazo, Cesar
    Bluegel, Stefan
    Heinze, Stefan
    Mokrousov, Yuriy
    PHYSICAL REVIEW LETTERS, 2012, 108 (05)
  • [7] 2D transition metal dichalcogenides
    Manzeli, Sajedeh
    Ovchinnikov, Dmitry
    Pasquier, Diego
    Yazyev, Oleg V.
    Kis, Andras
    NATURE REVIEWS MATERIALS, 2017, 2 (08):
  • [8] 2D transition metal dichalcogenides
    Sajedeh Manzeli
    Dmitry Ovchinnikov
    Diego Pasquier
    Oleg V. Yazyev
    Andras Kis
    Nature Reviews Materials, 2
  • [9] Electrically Tunable and Robust Bound States in the Continuum Enabled by 2D Transition Metal Dichalcogenide
    Zhao, Chen
    Chen, Weijin
    Wei, Jingxuan
    Deng, Wenjie
    Yan, Yinzhou
    Zhang, Yongzhe
    Qiu, Cheng-Wei
    ADVANCED OPTICAL MATERIALS, 2022, 10 (24):
  • [10] Quantum critical point description of the 2D metal-insulator transition
    Geldart, D. J. W.
    Neilson, D.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1182 - 1184