Multi-step ahead suspended sediment load modeling using machine learning- multi-model approach

被引:2
|
作者
Gelete, Gebre [1 ,2 ,3 ]
Nourani, Vahid [1 ,4 ,5 ,6 ]
Gokcekus, Huseyin [1 ,7 ]
Gichamo, Tagesse [2 ]
机构
[1] Near East Univ, Fac Civil & Environm Engn, TRNC, Mersin 10, TR-99138 Nicosia, Turkiye
[2] Arsi Univ, Coll Agr & Environm Sci, Asela 193, Ethiopia
[3] Al Ayen Univ, Sci Res Ctr, Environm & Atmospher Sci Res Grp, Nasiriyah 64001, Thi Qar, Iraq
[4] Univ Tabriz, Ctr Excellence Hydroinformat, Tabriz, Iran
[5] Univ Tabriz, Fac Civil Engn, Tabriz, Iran
[6] Charles Darwin Univ, Coll Engn Informat Technol & Environm, Brinkin, NT 0810, Australia
[7] Near East Univ, Energy Environm & Water Res Ctr, Via Mersin 10, TR- 99138 Nicosia, Turkiye
关键词
Suspended sediment load; AI models; Ensemble technique; Katar catchment; SUPPORT VECTOR MACHINE; FUZZY INFERENCE SYSTEM; ADAPTIVE NEURO-FUZZY; ARTIFICIAL-INTELLIGENCE; QUALITY MODELS; PERFORMANCE; PREDICTION; RAINFALL; NETWORK; RUNOFF;
D O I
10.1007/s12145-023-01192-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study aimed to develop an ensemble machine learning (ML) model for multi-step ahead SSL modeling in the Katar catchment, Ethiopia. To do so, different ML models such as multilinear regression (MLR), Feed-forward Neural Network (FFNN), Support Vector Regression and Adaptive Neuro-Fuzzy Inference System (ANFIS) were applied for one, two and three-step ahead SSL modeling. For this, two years of daily discharge and SSL data were used for model calibration and validation. Finally, four ensemble techniques: neuro-fuzzy ensemble (NFE), neural network ensemble (NE), weighted average ensemble (WE) and simple average ensemble (SE), were developed to improve the performance of single models. The performance of the developed models was evaluated using percent bias (PBIAS), mean absolute error (MAE), root mean square error (RMSE) and Nash Sutcliffe Efficiency Coefficient (NSE). The result shows that ANFIS outperformed the other individual models with a validation phase NSE value of 0.916,0.9 and 0.88 and RMSE value of 1630.5 ton/day, 1850.6 ton/day and 2026.6 ton/day, for one, two and three steps-ahead predictions, respectively. The NFE technique improved the individual model's performance in the validation phase up to 42.17%, 49.84% and 60.66% for one, two and three-step ahead modeling. Generally, the use of ensemble techniques resulted in promising improvements in single and multi-step ahead SSL modeling.
引用
收藏
页码:633 / 654
页数:22
相关论文
共 50 条
  • [41] A multi-model modeling approach to nonlinear systems based on lazy learning
    Pan Tianhong
    Li Shaoyuan
    Wang Xin
    Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 268 - 273
  • [42] Exergy load distribution approach for multi-step process design
    Sorin, M
    Hammache, A
    Diallo, O
    APPLIED THERMAL ENGINEERING, 2000, 20 (15-16) : 1365 - 1380
  • [43] A Multi-Step Approach to Modeling the 24-hour Daily Profiles of Electricity Load using Daily Splines
    Jornaz, Abdelmonaem
    Samaranayake, V. A.
    ENERGIES, 2019, 12 (21)
  • [44] A multi-model approach for predicting electric vehicle specifications and energy consumption using machine learning
    Khan, Ajmal
    Iqbal, Naveed
    Kaleem, Zeeshan
    Qarnain, Zul
    Bait-Suwailam, Mohammed M.
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [45] Univariate model for hour ahead multi-step solar irradiance forecasting
    Gupta, Priya
    Singh, Rhythm
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 494 - 501
  • [46] Multi-step ahead tourism demand forecasting: The perspective of the learning using privileged information paradigm
    Sun, Shaolong
    Li, Mingchen
    Wang, Shouyang
    Zhang, Chengyuan
    Expert Systems with Applications, 2022, 210
  • [47] Multi-step ahead forecasting of global solar radiation for arid zones using deep learning
    Chandola, Deeksha
    Gupta, Harsh
    Tikkiwal, Vinay Anand
    Bohra, Manoj Kumar
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 626 - 635
  • [48] MULTI-STEP METHODS FOR MACHINE LEARNING MODELS WITH WEB METRICS
    Popchev, Ivan
    Orozova, Daniela
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2023, 76 (11): : 1707 - 1715
  • [49] Multi-step ahead tourism demand forecasting: The perspective of the learning using privileged information paradigm
    Sun, Shaolong
    Li, Mingchen
    Wang, Shouyang
    Zhang, Chengyuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
  • [50] A Multi-Step Ensemble Approach for Energy Community Day-Ahead Net Load Point and Probabilistic Forecasting
    Ruano, Maria da Graca
    Ruano, Antonio
    ENERGIES, 2024, 17 (03)