State-Insensitive Trapping of Alkaline-Earth Atoms in a Nanofiber-Based Optical Dipole Trap

被引:8
|
作者
Kestler, G. [1 ]
Ton, K. [1 ]
Filin, D. [2 ]
Cheung, C. [2 ]
Schneeweiss, P. [3 ]
Hoinkes, T. [3 ]
Volz, J. [3 ]
Safronova, M. S. [2 ]
Rauschenbeutel, A. [3 ]
Barreiro, J. T. [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
[2] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[3] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
来源
PRX QUANTUM | 2023年 / 4卷 / 04期
关键词
MICRORING RESONATORS; LIGHT;
D O I
10.1103/PRXQuantum.4.040308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Neutral atoms that are optically trapped using the evanescent fields surrounding optical nanofibers are a promising platform for developing quantum technologies and exploring fundamental science, such as quantum networks and many-body physics of interacting photons. Building on the successful advancements with trapped alkali atoms, here we trap strontium-88 atoms, an alkaline-earth element, in a state-insensitive, nanofiber-based optical dipole trap using the evanescent fields of an optical nanofiber. Employing a two-color, double magic-wavelength trapping scheme, we realize state-insensitive trapping of the atoms for the kilohertz-wide 5s2 1S0 - 5s5p 3P1,|m|=1 intercombination transition, which we verify by performing high-resolution spectroscopy for an atom-surface distance of about 300 nm. This allows us to experimentally find and verify the state insensitivity of the trap nearby a theoretically predicted magic wavelength of 435.827(25) nm, a necessary step to confirm precision atomic physics calculations. Alkaline-earth atoms also exhibit nonmagnetic ground states and ultranarrow linewidth transitions making them ideal candidates for atomic clocks and precision metrology applications, especially with state-insensitive traps. Additionally, given the low collisional scattering length specific to strontium-88, this work also lays the foundation for developing versatile and robust matter-wave atomtronic circuits over nanophotonic waveguides.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Trapping metastable chromium atoms in a crossed optical dipole trap
    Beaufils, Q.
    Chicireanu, R.
    Pouderous, A.
    Laburthe-Tolra, B.
    Marechal, E.
    Vernac, L.
    Keller, J. -C.
    Gorceix, O.
    ANNALES DE PHYSIQUE, 2007, 32 (2-3) : 171 - 173
  • [22] Ground state of alkaline-earth fermionic atoms in one-dimensional optical lattices
    J. Silva-Valencia
    A. M. C. Souza
    The European Physical Journal B, 2012, 85
  • [23] Machine learner optimization of optical nanofiber-based dipole traps
    Gupta, Ratnesh K.
    Everett, Jesse L.
    Tranter, Aaron D.
    Henke, Rene
    Gokhroo, Vandna
    Lam, Ping Koy
    Chormaic, Sile Nic
    AVS QUANTUM SCIENCE, 2022, 4 (02):
  • [24] Ground state of alkaline-earth fermionic atoms in one-dimensional optical lattices
    Silva-Valencia, J.
    Souza, A. M. C.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (01):
  • [25] Topological superfluidity with repulsive alkaline-earth atoms in optical lattices
    Isaev, L.
    Kaufman, A.
    Ortiz, G.
    Rey, A. M.
    NEW JOURNAL OF PHYSICS, 2019, 21
  • [26] Orbital ordering of ultracold alkaline-earth atoms in optical lattices
    Sotnikov, Andrii
    Oppong, Nelson Darkwah
    Zambrano, Yeimer
    Cichy, Agnieszka
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [27] Trapping Alkaline Earth Rydberg Atoms Optical Tweezer Arrays
    Wilson, J. T.
    Saskin, S.
    Meng, Y.
    Ma, S.
    Dilip, R.
    Burgers, A. P.
    Thompson, J. D.
    PHYSICAL REVIEW LETTERS, 2022, 128 (03)
  • [28] State-insensitive trapping of Rb atoms: Linearly versus circularly polarized light (vol 86, 033416, 2012)
    Arora, Bindiya
    Sahoo, B. K.
    PHYSICAL REVIEW A, 2019, 99 (04)
  • [29] Confinement of an alkaline-earth element in a grating magneto-optical trap
    Sitaram, A.
    Elgee, P. K.
    Campbell, G. K.
    Klimov, N. N.
    Eckel, S.
    Barker, D. S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (10):
  • [30] Effective trapping of cold atoms using dipole and radiative forces in an optical trap
    Mashimo, Taro
    Abe, Masashi
    Tojo, Satoshi
    PHYSICAL REVIEW A, 2019, 100 (06)