AID4I: An Intrusion Detection Framework for Industrial Internet of Things Using Automated Machine Learning

被引:2
|
作者
Sezgin, Anil [1 ,2 ]
Boyaci, Aytug [3 ]
机构
[1] Natl Def Univ, ATASAREN, TR-34334 Istanbul, Turkiye
[2] Siemens Corp Technol, Software Mot Dept, Siemens Adv, TR-34870 Istanbul, Turkiye
[3] Air Force Acad, Dept Comp Engn, Natl Def Univ, TR-34149 Istanbul, Turkiye
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 76卷 / 02期
关键词
Automated machine learning; intrusion detection system; industrial internet of things; parameter optimization;
D O I
10.32604/cmc.2023.040287
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By identifying and responding to any malicious behavior that could endanger the system, the Intrusion Detection System (IDS) is crucial for preserving the security of the Industrial Internet of Things (IIoT) network. The benefit of anomaly-based IDS is that they are able to recognize zero-day attacks due to the fact that they do not rely on a signature database to identify abnormal activity. In order to improve control over datasets and the process, this study proposes using an automated machine learning (AutoML) technique to automate the machine learning processes for IDS. Our ground-breaking architecture, known as AID4I, makes use of automatic machine learning methods for intrusion detection. Through automation of preprocessing, feature selection, model selection, and hyperparameter tuning, the objective is to identify an appropriate machine learning model for intrusion detection. Experimental studies demonstrate that the AID4I framework successfully proposes a suitable model. The integrity, security, and confidentiality of data transmitted across the IIoT network can be ensured by automating machine learning processes in the IDS to enhance its capacity to identify and stop threatening activities. With a comprehensive solution that takes advantage of the latest advances in automated machine learning methods to improve network security, AID4I is a powerful and effective instrument for intrusion detection. In preprocessing module, three distinct imputation methods are utilized to handle missing data, ensuring the robustness of the intrusion detection system in the presence of incomplete information. Feature selection module adopts a hybrid approach that combines Shapley values and genetic algorithm. The Parameter Optimization module encompasses a diverse set of 14 classification methods, allowing for thorough exploration and optimization of the parameters associated with each algorithm. By carefully tuning these parameters, the framework enhances its adaptability and accuracy in identifying potential intrusions. Experimental results demonstrate that the AID4I framework can achieve high levels of accuracy in detecting network intrusions up to 14.39% on public datasets, outperforming traditional intrusion detection methods while concurrently reducing the elapsed time for training and testing.
引用
收藏
页码:2121 / 2143
页数:23
相关论文
共 50 条
  • [31] Intrusion detection based on machine learning in the internet of things, attacks and counter measures
    Rehman, Eid
    Haseeb-ud-Din, Muhammad
    Malik, Arif Jamal
    Khan, Tehmina Karmat
    Abbasi, Aaqif Afzaal
    Kadry, Seifedine
    Khan, Muhammad Attique
    Rho, Seungmin
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (06): : 8890 - 8924
  • [32] Literature Review of Machine Learning Models on Intrusion Detection for Internet of Things Attacks
    Eriza, Aminanto Achmad
    Suryadi, M. T.
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1094 - 1098
  • [33] Internet of Things: A survey on machine learning-based intrusion detection approaches
    da Costa, Kelton A. P.
    Papa, Joao P.
    Lisboa, Celso O.
    Munoz, Roberto
    de Albuquerque, Victor Hugo C.
    COMPUTER NETWORKS, 2019, 151 : 147 - 157
  • [34] A machine learning-based lightweight intrusion detection system for the internet of things
    Fenanir S.
    Semchedine F.
    Baadache A.
    Revue d'Intelligence Artificielle, 2019, 33 (03): : 203 - 211
  • [35] Intrusion Detection System Through Advance Machine Learning for the Internet of Things Networks
    Saba, Tanzila
    Sadad, Tariq
    Rehman, Amjad
    Mehmood, Zahid
    Javaid, Qaisar
    IT PROFESSIONAL, 2021, 23 (02) : 58 - 64
  • [36] Utilizing Blockchain for Distributed Machine Learning based Intrusion Detection in Internet of Things
    Cheema, Muhammad Asaad
    Qureshi, Hassaan Khaliq
    Chrysostomou, Chrysostomos
    Lestas, Marios
    16TH ANNUAL INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2020), 2020, : 429 - 435
  • [37] A Transferable Deep Learning Framework for Improving the Accuracy of Internet of Things Intrusion Detection
    Kim, Haedam
    Park, Suhyun
    Hong, Hyemin
    Park, Jieun
    Kim, Seongmin
    FUTURE INTERNET, 2024, 16 (03)
  • [38] Survey of Machine Learning based intrusion detection methods for Internet of Medical Things
    Si-Ahmed, Ayoub
    Al-Garadi, Mohammed Ali
    Boustia, Narhimene
    APPLIED SOFT COMPUTING, 2023, 140
  • [39] Internet of Things Anomaly Detection using Machine Learning
    Njilla, Laruent
    Pearlstein, Larry
    Wu, Xin-Wen
    Lutz, Adam
    Ezekiel, Soundararajan
    2019 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2019,
  • [40] COLIDE: a collaborative intrusion detection framework for Internet of Things
    Arshad, Junaid
    Azad, Muhammad Ajmal
    Abdellatif, Mohammad Mahmoud
    Rehman, Muhammad Habib Ur
    Salah, Khaled
    IET NETWORKS, 2019, 8 (01) : 3 - 14