Research on Identification and Detection of Transmission Line Insulator Defects Based on a Lightweight YOLOv5 Network

被引:9
|
作者
Yu, Zhilong [1 ]
Lei, Yanqiao [1 ]
Shen, Feng [2 ]
Zhou, Shuai [3 ]
Yuan, Yue [2 ]
机构
[1] Harbin Univ Sci & Technol, Coll Automat, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Sch Instrumentat Sci & Engn, Harbin 150001, Peoples R China
[3] Yunnan Power Grid Co Ltd, Elect Power Res Inst, Kunming 650217, Peoples R China
关键词
insulators; defect detection; YOLOv5; noise reduction; RepVGG;
D O I
10.3390/rs15184552
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Transmission line fault detection using drones provides real-time assessment of the operational status of transmission equipment, and therefore it has immense importance in ensuring stable functioning of the transmission lines. Currently, identification of transmission line equipment relies predominantly on manual inspections that are susceptible to the influence of natural surroundings, resulting in sluggishness and a high rate of false detections. In view of this, in this study, we propose an insulator defect recognition algorithm based on a YOLOv5 model with a new lightweight network as the backbone network, combining noise reduction and target detection. First, we propose a new noise reduction algorithm, i.e., the adaptive neighborhood-weighted median filtering (NW-AMF) algorithm. This algorithm employs a weighted summation technique to determine the median value of the pixel point's neighborhood, effectively filtering out noise from the captured aerial images. Consequently, this approach significantly mitigates the adverse effects of varying noise levels on target detection. Subsequently, the RepVGG lightweight network structure is improved to the newly proposed lightweight structure called RcpVGG-YOLOv5. This structure facilitates single-branch inference, multi-branch training, and branch normalization, thereby improving the quantization performance while simultaneously striking a balance between target detection accuracy and speed. Furthermore, we propose a new loss function, i.e., Focal EIOU, to replace the original CIOU loss function. This optimization incorporates a penalty on the edge length of the target frame, which improves the contribution of the high-quality target gradient. This modification effectively addresses the issue of imbalanced positive and negative samples for small targets, suppresses background positive samples, and ultimately enhances the accuracy of detection. Finally, to align more closely with real-world engineering applications, the dataset utilized in this study consists of machine patrol images captured by the Unmanned Aerial Systems (UAS) of the Yunnan Power Supply Bureau Company. The experimental findings demonstrate that the proposed algorithm yields notable improvements in accuracy and inference speed compared to YOLOv5s, YOLOv7, and YOLOv8. Specifically, the improved algorithm achieves a 3.7% increase in accuracy and a 48.2% enhancement in inference speed compared to those of YOLOv5s. Similarly, it achieves a 2.7% accuracy improvement and a 33.5% increase in inference speed compared to those of YOLOv7, as well as a 1.5% accuracy enhancement and a 13.1% improvement in inference speed compared to those of YOLOv8. These results validate the effectiveness of the proposed algorithm through ablation experiments. Consequently, the method presented in this paper exhibits practical applicability in the detection of aerial images of transmission lines within complex environments. In future research endeavors, it is recommended to continue collecting aerial images for continuous iterative training, to optimize the model further, and to conduct in-depth investigations into the challenges associated with detecting small targets. Such endeavors hold significant importance for the advancement of transmission line detection.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Insulator Defect Detection Based on Improved YOLOv5 Model
    Chen, Yongxin
    Du, Zhenan
    Li, Hengxuan
    Zhang, Kanjun
    Wen, Pei
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 123 - 127
  • [42] Improved lightweight road damage detection based on YOLOv5
    Liu, Chang
    Sun, Yu
    Chen, Jin
    Yang, Jing
    Wang, Fengchao
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 314 - 320
  • [43] A lightweight tea bud detection model based on Yolov5
    Gui, Zhiyong
    Chen, Jianneng
    Li, Yang
    Chen, Zhiwei
    Wu, Chuanyu
    Dong, Chunwang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 205
  • [44] A lightweight waxberry fruit detection model based on YOLOv5
    Yang, Chengyu
    Liu, Jun
    He, Jianting
    IET IMAGE PROCESSING, 2024, 18 (07) : 1796 - 1808
  • [45] A Lightweight Model Based on YOLOv5 for Helmet Wearing Detection
    Zou, Xiongxin
    Chen, Zuguo
    Zhou, Yimin
    4TH INTERNATIONAL CONFERENCE ON INFORMATICS ENGINEERING AND INFORMATION SCIENCE (ICIEIS2021), 2022, 12161
  • [46] Lightweight Tunnel Obstacle Detection Based on Improved YOLOv5
    Li, Yingjie
    Ma, Chuanyi
    Li, Liping
    Wang, Rui
    Liu, Zhihui
    Sun, Zizheng
    SENSORS, 2024, 24 (02)
  • [47] A lightweight bus passenger detection model based on YOLOv5
    Li, Xiaosong
    Wu, Yanxia
    Fu, Yan
    Zhang, Lidan
    Hong, Ruize
    IET IMAGE PROCESSING, 2023, 17 (14) : 3927 - 3937
  • [48] Insulator defect detection based on improved YOLOv5 algorithm
    Wang, Yongheng
    Li, Qin
    Liu, Yachong
    Wang, Chao
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 770 - 775
  • [49] Lightweight Fire Detection Algorithm Based on Improved YOLOv5
    Zhang, Dawei
    Chen, Yutang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 809 - 816
  • [50] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng Y.
    Tu X.
    Yang Q.
    Li R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38