Calibration of Transformer-Based Models for Identifying Stress and Depression in Social Media

被引:23
|
作者
Ilias, Loukas [1 ]
Mouzakitis, Spiros [1 ]
Askounis, Dimitris [1 ]
机构
[1] Natl Tech Univ Athens, Decis Support Syst Lab, Schoolof Elect & Comp Engn, Athens 15780, Greece
关键词
~Calibration; depression; emotion; mental health; stress; transformers; EMOTION;
D O I
10.1109/TCSS.2023.3283009
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In today's fast-paced world, the rates of stress and depression present a surge. People use social media for expressing their thoughts and feelings through posts. Therefore, social media provide assistance for the early detection of mental health conditions. Existing methods mainly introduce feature extraction approaches and train shallow machine learning (ML) classifiers. For addressing the need of creating a large feature set and obtaining better performance, other research studies use deep neural networks or language models based on transformers. Despite the fact that transformer-based models achieve noticeable improvements, they cannot often capture rich factual knowledge. Although there have been proposed a number of studies aiming to enhance the pretrained transformer-based models with extra information or additional modalities, no prior work has exploited these modifications for detecting stress and depression through social media. In addition, although the reliability of a machine learning (ML) model's confidence in its predictions is critical for high-risk applications, there is no prior work taken into consideration the model calibration. To resolve the above issues, we present the first study in the task of depression and stress detection in social media, which injects extra-linguistic information in transformer-based models, namely, bidirectional encoder representations from transformers (BERT) and MentalBERT. Specifically, the proposed approach employs a multimodal adaptation gate for creating the combined embeddings, which are given as input to a BERT (or MentalBERT) model. For taking into account the model calibration, we apply label smoothing. We test our proposed approaches in three publicly available datasets and demonstrate that the integration of linguistic features into transformer-based models presents a surge in performance. Also, the usage of label smoothing contributes to both the improvement of the model's performance and the calibration of the model. We finally perform a linguistic analysis of the posts and show differences in language between stressful and nonstressful texts, as well as depressive and nondepressive posts.
引用
收藏
页码:1979 / 1990
页数:12
相关论文
共 50 条
  • [31] Are transformer-based models more robust than CNN-based models?
    Liu, Zhendong
    Qian, Shuwei
    Xia, Changhong
    Wang, Chongjun
    NEURAL NETWORKS, 2024, 172
  • [32] Strawberry disease identification with vision transformer-based models
    Nguyen, Hai Thanh
    Tran, Tri Dac
    Nguyen, Thanh Tuong
    Pham, Nhi Minh
    Nguyen Ly, Phuc Hoang
    Luong, Huong Hoang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (29) : 73101 - 73126
  • [33] Applications of transformer-based language models in bioinformatics: a survey
    Zhang, Shuang
    Fan, Rui
    Liu, Yuti
    Chen, Shuang
    Liu, Qiao
    Zeng, Wanwen
    NEURO-ONCOLOGY ADVANCES, 2023, 5 (01)
  • [34] TAG: Gradient Attack on Transformer-based Language Models
    Deng, Jieren
    Wang, Yijue
    Li, Ji
    Wang, Chenghong
    Shang, Chao
    Liu, Hang
    Rajasekaran, Sanguthevar
    Ding, Caiwen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 3600 - 3610
  • [35] Comparison of pretrained transformer-based models for influenza and COVID-19 detection using social media text data in Saskatchewan, Canada
    Tian, Yuan
    Zhang, Wenjing
    Duan, Lujie
    McDonald, Wade
    Osgood, Nathaniel
    FRONTIERS IN DIGITAL HEALTH, 2023, 5
  • [36] A Transformer-Based Approach for Choosing Actions in Social Robotics
    De Benedictis, Riccardo
    Beraldo, Gloria
    Cortellessa, Gabriella
    Fracasso, Francesca
    Cesta, Amedeo
    SOCIAL ROBOTICS, ICSR 2022, PT I, 2022, 13817 : 198 - 207
  • [37] CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network
    Xiao, Yuxuan
    Li, Yao
    Meng, Chengzhen
    Li, Xingchen
    Ji, Jianmin
    Zhang, Yanyong
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 16714 - 16720
  • [38] FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media
    Ghorbanpour, Faeze
    Ramezani, Maryam
    Fazli, Mohammad Amin
    Rabiee, Hamid R.
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)
  • [39] FNR: a similarity and transformer-based approach to detect multi-modal fake news in social media
    Faeze Ghorbanpour
    Maryam Ramezani
    Mohammad Amin Fazli
    Hamid R. Rabiee
    Social Network Analysis and Mining, 13
  • [40] A transformer-based multi-task framework for joint detection of aggression and hate on social media data
    Ghosh, Soumitra
    Priyankar, Amit
    Ekbal, Asif
    Bhattacharyya, Pushpak
    NATURAL LANGUAGE ENGINEERING, 2023, 29 (06) : 1495 - 1515