Energy Storage Triboelectric Nanogenerator Based on Ratchet Mechanism for Random Ocean Energy Harvesting

被引:10
|
作者
Meng, Lixia [1 ]
Yang, Yanfei [2 ]
Liu, Shiming [1 ]
Wang, Shuo [1 ]
Zhang, Tao [1 ]
Guo, Xilin [1 ]
机构
[1] Shenyang Jianzhu Univ, Sch Mech Engn, Shenyang 110168, Liaoning, Peoples R China
[2] Inner Mongolia Hohhot Pumped Storage Power Generat, Hohhot 010051, Inner Mongolia, Peoples R China
来源
ACS OMEGA | 2023年 / 8卷 / 01期
关键词
BLUE ENERGY; DUCK;
D O I
10.1021/acsomega.2c06783
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The instability of the ocean waves, such as intermittence, randomness, and irregularity, greatly affects the application of a triboelectric nanogenerator (TENG) in its aspects and leads to the irregularity and uncontrollability of its output performance. Hence, the energy storage TENG (ES-TENG) based on the ratchet mechanism is proposed in this work. The ES-TENG uses the ratchet mechanism to store the wave energy in the clockwork spring and then releases it in a centralized way to convert the wave energy into electric energy. When the ES-TENG adopts this method, the change of external excitation does not affect its output performance. Simultaneously, the shell of the ES-TENG is duck-shaped, which can better adapt to the wave environment. The peak power, open-circuit voltage, and short-circuit current of the ES-TENG are 6.2 mW, 495 V, and 19 mu A, respectively. In the simulated wave experiment, the ES-TENG can successfully drive a temperature sensor. In summary, this work shows an economic, environmental friendly TENG that can adapt to the wave motion, and its output performance is not affected by wave instability, which has an important guiding significance for the further development and utilization of TENG in ocean energy.
引用
收藏
页码:1362 / 1368
页数:7
相关论文
共 50 条
  • [41] A triboelectric nanogenerator based on cosmetic fixing powder for mechanical energy harvesting
    Kequan Xia
    Yue Chi
    Jiangming Fu
    Zhiyuan Zhu
    Hongze Zhang
    Chaolin Du
    Zhiwei Xu
    Microsystems & Nanoengineering, 5
  • [42] A triboelectric nanogenerator based on cosmetic fixing powder for mechanical energy harvesting
    Xia, Kequan
    Chi, Yue
    Fu, Jiangming
    Zhu, Zhiyuan
    Zhang, Hongze
    Du, Chaolin
    Xu, Zhiwei
    MICROSYSTEMS & NANOENGINEERING, 2019, 5 (1)
  • [43] Design of DC-Triboelectric Nanogenerator for Energy Harvesting
    Abdelrahim, Mohamed Omer Mahgoub
    Lee, Lini
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2022, 13 (06) : 1308 - 1316
  • [44] Effective energy storage from a triboelectric nanogenerator
    Yunlong Zi
    Jie Wang
    Sihong Wang
    Shengming Li
    Zhen Wen
    Hengyu Guo
    Zhong Lin Wang
    Nature Communications, 7
  • [45] A Triboelectric Nanogenerator for Energy Harvesting from Transformers' Vibrations
    Simoes, Agnes Nascimento
    Carvalho, Danilo Jose
    Morita, Eugenio de Souza
    Moretti, Haroldo Luiz
    Vendrameto, Helen Velozo
    Fu, Li
    Torres, Floriano
    de Souza, Andre Nunes
    Bizzo, Waldir Antonio
    Mazon, Talita
    MACHINES, 2022, 10 (03)
  • [46] Effective energy storage from a triboelectric nanogenerator
    Zi, Yunlong
    Wang, Jie
    Wang, Sihong
    Li, Shengming
    Wen, Zhen
    Guo, Hengyu
    Wang, Zhong Lin
    NATURE COMMUNICATIONS, 2016, 7
  • [47] A generalized model for a triboelectric nanogenerator energy harvesting system
    Sun, Bobo
    Guo, Xin
    Zhang, Yuyang
    Wang, Zhong Lin
    Shao, Jiajia
    NANO ENERGY, 2024, 126
  • [48] Nonlinear Dynamics of Wind Energy Harvesting Triboelectric Nanogenerator
    Mo, Shuai
    Zeng, Yanjun
    Wang, Zhen
    Zhang, Yingxin
    Zhou, Yuansheng
    Zhang, Jielu
    Zhang, Wei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2025, 13 (04)
  • [49] Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy
    Ting Quan
    Yingchun Wu
    Ya Yang
    Nano Research, 2015, 8 : 3272 - 3280
  • [50] Soft Tubular Triboelectric Nanogenerator for Biomechanical Energy Harvesting
    Liu, Guo Xu
    Li, Wen Jian
    Liu, Wen Bo
    Bu, Tian Zhao
    Guo, Tong
    Jiang, Dong Dong
    Zhao, Jun Qing
    Xi, Feng Ben
    Hu, Wei Guo
    Zhang, Chi
    ADVANCED SUSTAINABLE SYSTEMS, 2018, 2 (12):