Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain

被引:27
|
作者
Parusel, Sebastian [1 ,2 ]
Yi, Min-Hee [1 ]
Hunt, Christine L. [3 ]
Wu, Long-Jun [1 ,4 ,5 ]
机构
[1] Mayo Clin, Dept Neurol, Rochester, MN 55905 USA
[2] Maastricht Univ, Fac Psychol & Neurosci, NL-6200 MD Maastricht, Netherlands
[3] Mayo Clin, Dept Pain Med, Jacksonville, FL 32224 USA
[4] Mayo Clin, Dept Neurosci, Jacksonville, FL 32224 USA
[5] Mayo Clin, Dept Immunol, Rochester, MN 55905 USA
基金
美国国家卫生研究院;
关键词
Chronic pain; Microglia; Optogenetics; Chemogenetics; DREADDs; ReaChR; NEUROPATHIC PAIN; SPINAL MICROGLIA; SYNAPTIC PLASTICITY; MECHANICAL ALLODYNIA; ACTIVATED MICROGLIA; P2Y12; RECEPTORS; UP-REGULATION; IMMUNE CELLS; HYPERSENSITIVITY; RELEASE;
D O I
10.1007/s12264-022-00937-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.
引用
收藏
页码:368 / 378
页数:11
相关论文
共 50 条
  • [21] Thermal constraints on in vivo optogenetic manipulations
    Owen, Scott F.
    Liu, Max H.
    Kreitzer, Anatol C.
    NATURE NEUROSCIENCE, 2019, 22 (07) : 1061 - +
  • [22] Thermal constraints on in vivo optogenetic manipulations
    Scott F. Owen
    Max H. Liu
    Anatol C. Kreitzer
    Nature Neuroscience, 2019, 22 : 1061 - 1065
  • [23] Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo
    Krut, Viktoriya G.
    Kalinichenko, Andrei L.
    Maltsev, Dmitry I.
    Jappy, David
    Shevchenko, Evgeny K.
    Podgorny, Oleg, V
    Belousov, Vsevolod V.
    PROGRESS IN NEUROBIOLOGY, 2024, 235
  • [24] Chemogenetic and optogenetic tools for astrocyte research in behaving animals
    Goshen, I.
    GLIA, 2019, 67 : E107 - E107
  • [25] Using Opioid Receptors to Expand the Chemogenetic and Optogenetic Toolbox
    Damez-Werno, Diane M.
    Kenny, Paul J.
    NEURON, 2015, 86 (04) : 853 - 855
  • [26] Microglia take control in chronic pain
    Sian Lewis
    Nature Reviews Neuroscience, 2013, 14 : 154 - 154
  • [27] Special Issue on microglia and chronic pain
    Hulsebosch, Claire E.
    EXPERIMENTAL NEUROLOGY, 2012, 234 (02) : 253 - 254
  • [28] Microglia take control in chronic pain
    Lewis, Sian
    NATURE REVIEWS NEUROSCIENCE, 2013, 14 (03) : 154 - 155
  • [29] Chemogenetic management of neuropathic pain
    Basbaum, Allan
    BRAIN, 2017, 140 : 2522 - 2525
  • [30] Chemogenetic approaches reveal dual functions of microglia in seizures
    Dheer, Aastha
    Bosco, Dale B.
    Zheng, Jiaying
    Wang, Lingxiao
    Zhao, Shunyi
    Haruwaka, Koichiro
    Yi, Min-Hee
    Barath, Abhijeet
    Tian, Dai-Shi
    Wu, Long-Jun
    BRAIN BEHAVIOR AND IMMUNITY, 2024, 115 : 406 - 418