Superstatistics of anisotropic oscillator in a noncommutative plane

被引:1
|
作者
Nath, Debraj [1 ]
机构
[1] Vivekananda Coll, Dept Math, Kolkata 700063, WB, India
关键词
Noncommutative quantum mechanics; Anisotropic oscillator; Energy spectrum; Superstatistics; Thermal statistics; Partition function; Low temperature; High temperature; HARMONIC-OSCILLATOR; DIRAC OSCILLATOR; HYDROGEN-ATOM; STATISTICS; MECHANICS;
D O I
10.1016/j.physa.2023.129031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we study anisotropic oscillator in a noncommutative plane. We first, obtain the exact energy values as a function of noncommutative parameter theta. Using these energy values, we also investigate the superstatistical thermodynamic functions associated with the model. The superstatistical partition function is expressed as a double series and the convergence of double series is tested for the q-deformed Dirac delta distribution function. Also, convergent series is expressed up to second order of inverse temperature (beta = 1/(k(B)T)) by the Euler-Maclaurin formula and compare with direct summation over possible bound states up to certain approximation. In-addition, superstatistics and well-known thermal statistics of anisotropic oscillator are compared and three special cases in commutative and noncommutative spaces are investigated. Moreover, superstatistics and ordinary statistics examine at low and high temperatures. The effect of theta, beta and deformation parameter q on thermal properties are investigated at low and high temperatures.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] DIRAC OSCILLATOR IN DYNAMICAL NONCOMMUTATIVE SPACE
    Haouam, Ilyas
    ACTA POLYTECHNICA, 2021, 61 (06) : 689 - 702
  • [32] ANHARMONIC NONCOMMUTATIVE OSCILLATOR AT FINITE TEMPERATURE
    Karaj-Abad, H. Sarvari
    Jahan, A.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (03): : 283 - 290
  • [33] Anharmonic noncommutative oscillator at finite temperature
    2016, Politechnica University of Bucharest (78):
  • [34] Dirac Oscillator in Noncommutative Phase Space
    Shaohong Cai
    Tao Jing
    Guangjie Guo
    Rukun Zhang
    International Journal of Theoretical Physics, 2010, 49 : 1699 - 1705
  • [35] Dirac Oscillator in Noncommutative Phase Space
    Cai, Shaohong
    Jing, Tao
    Guo, Guangjie
    Zhang, Rukun
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (08) : 1699 - 1705
  • [36] DKP oscillator in noncommutative phase space
    Guo, Guangjie
    Long, Chaoyun
    Yang, Zuhua
    Qin, Shuijie
    CANADIAN JOURNAL OF PHYSICS, 2009, 87 (09) : 989 - 993
  • [37] Plane waves in noncommutative fluids
    Abdalla, M. C. B.
    Holender, L.
    Santos, M. A.
    Vancea, I. V.
    PHYSICS LETTERS A, 2013, 377 (18) : 1227 - 1232
  • [38] The geometry of noncommutative plane curves
    Jondrup, Soren
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) : 3467 - 3477
  • [39] Dimension of noncommutative plane curves
    Jondrup, Soren
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (03)
  • [40] On the spectral zeta function for the noncommutative harmonic oscillator
    Ichinose, Takashi
    Wakayama, Masato
    REPORTS ON MATHEMATICAL PHYSICS, 2007, 59 (03) : 421 - 432