Video-Based Activity Recognition for Automated Motor Assessment of Parkinson's Disease
被引:15
|
作者:
Sarapata, Grzegorz
论文数: 0引用数: 0
h-index: 0
机构:
Machine Med Technol, London SE16 4DG, EnglandMachine Med Technol, London SE16 4DG, England
Sarapata, Grzegorz
[1
]
Dushin, Yuriy
论文数: 0引用数: 0
h-index: 0
机构:
Machine Med Technol, London SE16 4DG, EnglandMachine Med Technol, London SE16 4DG, England
Dushin, Yuriy
[1
]
Morinan, Gareth
论文数: 0引用数: 0
h-index: 0
机构:
Machine Med Technol, London SE16 4DG, EnglandMachine Med Technol, London SE16 4DG, England
Morinan, Gareth
[1
]
Ong, Joshua
论文数: 0引用数: 0
h-index: 0
机构:
Machine Med Technol, London SE16 4DG, EnglandMachine Med Technol, London SE16 4DG, England
Ong, Joshua
[1
]
Budhdeo, Sanjay
论文数: 0引用数: 0
h-index: 0
机构:
Univ Coll Lon don, Inst Neurol, Dept Clin & Movement Neurosci, Queen Sq, London WC1N 3BG, EnglandMachine Med Technol, London SE16 4DG, England
Budhdeo, Sanjay
[2
]
Kainz, Bernhard
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Comp, London SW7 2AZ, England
FAU Erlangen Nurnberg, DE-91054 Erlangen, GermanyMachine Med Technol, London SE16 4DG, England
Kainz, Bernhard
[3
,4
]
O'Keeffe, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
Machine Med Technol, London SE16 4DG, EnglandMachine Med Technol, London SE16 4DG, England
O'Keeffe, Jonathan
[1
]
机构:
[1] Machine Med Technol, London SE16 4DG, England
[2] Univ Coll Lon don, Inst Neurol, Dept Clin & Movement Neurosci, Queen Sq, London WC1N 3BG, England
[3] Imperial Coll London, Dept Comp, London SW7 2AZ, England
Over the last decade, video-enabled mobile devices have become ubiquitous, while advances in markerless pose estimation allow an individual's body position to be tracked accurately and efficiently across the frames of a video. Previous work by this and other groups has shown that pose-extracted kinematic features can be used to reliably measure motor impairment in Parkinson's disease (PD). This presents the prospect of developing an asynchronous and scalable, video-based assessment of motor dysfunction. Crucial to this endeavour is the ability to automatically recognise the class of an action being performed, without which manual labelling is required. Representing the evolution of body joint locations as a spatio-temporal graph, we implement a deep-learning model for video and frame-level classification of activities performed according to part 3 of the Movement Disorder Society Unified PD Rating Scale (MDS-UPDRS). We train and validate this system using a dataset of n = 7310 video clips, recorded at 5 independent sites. This approach reaches human-level performance in detecting and classifying periods of activity within monocular video clips. Our framework could support clinical workflows and patient care at scale through applications such as quality monitoring of clinical data collection, automated labelling of video streams, or a module within a remote self-assessment system.
机构:
Univ Calif Los Angeles, Olive View UCLA Med Ctr, 14445 Olive View Dr, Sylmar, CA 91342 USAUniv Calif Los Angeles, Olive View UCLA Med Ctr, 14445 Olive View Dr, Sylmar, CA 91342 USA
Woo, Benjamin K. P.
Chung, Jamie O. P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Olive View UCLA Med Ctr, 14445 Olive View Dr, Sylmar, CA 91342 USAUniv Calif Los Angeles, Olive View UCLA Med Ctr, 14445 Olive View Dr, Sylmar, CA 91342 USA