Synthetic Learner: Model-free inference on treatments over time

被引:2
|
作者
Viviano, Davide [1 ,4 ]
Bradic, Jelena [2 ,3 ]
机构
[1] Stanford Grad Sch Business, 655 Knight Way, Stanford, CA 94305 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Halicioglu Data Sci Inst, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Econ, La Jolla, CA 92093 USA
关键词
Synthetic control; Difference in differences; Causal inference; Random Forests; CAUSAL INFERENCE; IMPACT; VOLATILITY; REFORM;
D O I
10.1016/j.jeconom.2022.07.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
Understanding the effect of a particular treatment or a policy pertains to many areas of interest, ranging from political economics, marketing to healthcare. In this paper, we develop a non-parametric algorithm for detecting the effects of treatment over time in the context of Synthetic Controls. The method builds on counterfactual predictions from many algorithms without necessarily assuming that the algorithms correctly capture the model. We introduce an inferential procedure to detect treatment effects and show that the testing procedure controls size asymptotically for stationary, beta mixing processes without imposing any restriction on the set of base algorithms under consideration. We discuss consistency guarantees for average treatment effect estimates and derive regret bounds for the proposed methodology. The class of algorithms may include Random Forest, Lasso, or any other machine-learning estimator. Numerical studies and an application illustrate the advantages of the method.& COPY; 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:691 / 713
页数:23
相关论文
共 50 条
  • [1] CARVING MODEL-FREE INFERENCE
    Panigrahi, Snigdha
    ANNALS OF STATISTICS, 2023, 51 (06): : 2318 - 2341
  • [2] MODEL-FREE INFERENCE FOR TAIL RISK MEASURES
    Xu, Ke-Li
    ECONOMETRIC THEORY, 2016, 32 (01) : 122 - 153
  • [3] Approximately Valid and Model-Free Possibilistic Inference
    Cella, Leonardo
    Martin, Ryan
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS (BELIEF 2021), 2021, 12915 : 127 - 136
  • [4] Model-free causal inference of binary experimental data
    Ding, Peng
    Miratrix, Luke W.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (01) : 200 - 214
  • [5] Model-free Data-Driven inference in computational mechanics
    Prume, E.
    Reese, S.
    Ortiz, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 403
  • [6] Model-free inference of diffusion networks using RKHS embeddings
    Hu, Shoubo
    Cautis, Bogdan
    Chen, Zhitang
    Chan, Laiwan
    Geng, Yanhui
    He, Xiuqiang
    DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (02) : 499 - 525
  • [7] Model-Free Statistical Inference on High-Dimensional Data
    Guo, Xu
    Li, Runze
    Zhang, Zhe
    Zou, Changliang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [8] Model-free inference of diffusion networks using RKHS embeddings
    Shoubo Hu
    Bogdan Cautis
    Zhitang Chen
    Laiwan Chan
    Yanhui Geng
    Xiuqiang He
    Data Mining and Knowledge Discovery, 2019, 33 : 499 - 525
  • [9] Decision Theory via Model-Free Generalized Fiducial Inference
    Williams, Jonathan P.
    Liu, Yang
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS, BELIEF 2024, 2024, 14909 : 131 - 139
  • [10] Model-Free and Prior-Free Data-Driven Inference in Mechanics
    Conti, Sergio
    Hoffmann, Franca
    Ortiz, Michael
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (01)