Targeted high-throughput mutagenesis of the human spliceosome reveals its in vivo operating principles

被引:16
|
作者
Beusch, Irene [1 ]
Rao, Beiduo [1 ,4 ]
Studer, Michael K. [1 ,2 ]
Luhovska, Tetiana [2 ]
Sukyte, Viktorija [2 ]
Lei, Susan [1 ,5 ]
Oses-Prieto, Juan [3 ]
SeGraves, Em [1 ]
Burlingame, Alma [1 ,3 ]
Jonas, Stefanie [1 ,2 ]
Madhani, Hiten D. [1 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[2] Swiss Fed Inst Technol, Inst Mol Biol & Biophys, Dept Biol, Zurich, Switzerland
[3] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA USA
[4] Calico Life Sci LLC, South San Francisco, CA USA
[5] Univ Calif Davis, Davis, CA USA
基金
芬兰科学院; 瑞士国家科学基金会;
关键词
SPLICING FIDELITY; STRUCTURAL BASIS; LARIAT-INTRON; BOX ATPASES; RNA; PRP43; ACTIVATION; COMPONENTS; MUTATIONS; PROOFREAD;
D O I
10.1016/j.molcel.2023.06.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The spliceosome is a staggeringly complex machine, comprising, in humans, 5 snRNAs and >150 proteins. We scaled haploid CRISPR-Cas9 base editing to target the entire human spliceosome and investigated the mutants using the U2 snRNP/SF3b inhibitor, pladienolide B. Hypersensitive substitutions define functional sites in the U1/U2-containing A complex but also in components that act as late as the second chemical step after SF3b is dissociated. Viable resistance substitutions map not only to the pladienolide B-binding site but also to the G-patch domain of SUGP1, which lacks orthologs in yeast. We used these mutants and biochemical approaches to identify the spliceosomal disassemblase DHX15/hPrp43 as the ATPase ligand for SUGP1. These and other data support a model in which SUGP1 promotes splicing fidelity by triggering early spliceosome disassembly in response to kinetic blocks. Our approach provides a template for the analysis of essential cellular machines in humans.
引用
收藏
页码:2578 / +
页数:27
相关论文
共 50 条
  • [21] High-Throughput Sequencing Reveals Principles of Adeno-Associated Virus Serotype 2 Integration
    Janovitz, Tyler
    Klein, Isaac A.
    Oliveira, Thiago
    Mukherjee, Piali
    Nussenzweig, Michel C.
    Sadelain, Michel
    Falck-Pedersen, Erik
    JOURNAL OF VIROLOGY, 2013, 87 (15) : 8559 - 8568
  • [22] Random mutagenesis of lectins and high-throughput screening of mutant libraries
    Mrazkova, J.
    Pokorna, M.
    Wimmerova, M.
    FEBS JOURNAL, 2011, 278 : 420 - 421
  • [23] A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish
    Gaurav K Varshney
    Blake Carrington
    Wuhong Pei
    Kevin Bishop
    Zelin Chen
    Chunxin Fan
    Lisha Xu
    Marypat Jones
    Matthew C LaFave
    Johan Ledin
    Raman Sood
    Shawn M Burgess
    Nature Protocols, 2016, 11 : 2357 - 2375
  • [24] A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish
    Varshney, Gaurav K.
    Carrington, Blake
    Pei, Wuhong
    Bishop, Kevin
    Chen, Zelin
    Fan, Chunxin
    Xu, Lisha
    Jones, Marypat
    LaFave, Matthew C.
    Ledin, Johan
    Sood, Raman
    Burgess, Shawn M.
    NATURE PROTOCOLS, 2016, 11 (12) : 2357 - 2375
  • [25] High-throughput and genome-scale targeted mutagenesis using CRISPR in a nonmodel multicellular organism, Bombyx mori
    Ma, Sanyuan
    Zhang, Tong
    Wang, Ruolin
    Wang, Pan
    Liu, Yue
    Chang, Jiasong
    Wang, Aoming
    Lan, Xinhui
    Sun, Le
    Sun, Hao
    Shi, Run
    Lu, Wei
    Liu, Dan
    Zhang, Na
    Hu, Wenbo
    Wang, Xiaogang
    Xing, Weiqing
    Jia, Ling
    Xia, Qingyou
    GENOME RESEARCH, 2024, 34 (01) : 134 - 144
  • [26] High-throughput site-directed mutagenesis in ES cells
    Höllrigl, A
    Hergovich, A
    Görzer, I
    Bader, A
    Ellersdorfer, G
    Habegger, K
    Hammer, E
    Enzinger, S
    Capetanaki, Y
    Weitzer, G
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 289 (02) : 329 - 336
  • [27] Targeted mutagenesis and high-throughput screening of diversified gene and promoter libraries for isolating gain-of-function mutations
    Huttanus, Herbert M.
    Triola, Ellin-Kristina H.
    Velasquez-Guzman, Jeanette C.
    Shin, Sang-Min
    Granja-Travez, Rommel S.
    Singh, Anmoldeep
    Dale, Taraka
    Jha, Ramesh K.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [28] GigaAssay - An adaptable high-throughput saturation mutagenesis assay platform
    Benjamin, Ronald
    Giacoletto, Christopher J.
    FitzHugh, Zachary T.
    Eames, Danielle
    Buczek, Lindsay
    Wu, Xiaogang
    Newsome, Jacklyn
    Han, Mira, V
    Pearson, Tony
    Wei, Zhi
    Banerjee, Atoshi
    Brown, Lancer
    Valente, Liz J.
    Shen, Shirley
    Deng, Hong-Wen
    Schiller, Martin R.
    GENOMICS, 2022, 114 (04)
  • [29] High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol
    Bandell, M
    Dubin, AE
    Petrus, MJ
    Orth, A
    Mathur, J
    Hwang, SW
    Patapoutian, A
    NATURE NEUROSCIENCE, 2006, 9 (04) : 493 - 500
  • [30] High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol
    Michael Bandell
    Adrienne E Dubin
    Matt J Petrus
    Anthony Orth
    Jayanti Mathur
    Sun Wook Hwang
    Ardem Patapoutian
    Nature Neuroscience, 2006, 9 : 493 - 500