Sign patterns of inverse doubly nonnegative matrices and inverse completely positive matrices

被引:0
|
作者
Shaked-Monderer, Naomi [1 ]
机构
[1] Max Stern Yezreel Valley Coll, IL-1930600 Yezreel Valley, Israel
关键词
Doubly nonnegative matrix; Completely positive matrix; Sign pattern matrix; M-matrix; INTERIOR;
D O I
10.1016/j.laa.2022.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We identify all possible {+, -, 0} sign patterns of inverse doubly nonnegative (DNN) matrices, and of all inverse completely positive (CP) matrices. We prove that all inverses of DNN realizations of a connected graph share the same {+, -, 0} sign pattern if and only if the graph is bipartite, and the same holds in CP case. In the DNN case, the characterization generalizes a result of Roy and Xue (Linear Algebra and its Applications 610 (2021) 480-487) [14] regarding the {+, -} sign pattern of inverse DNN matrices, where + denotes a nonnegative entry, and the second result answers a question left open there. We also consider the reverse question: which {+, -, 0} sign patterns of inverse DNN/CP matrices determine uniquely the graph of their originating DNN/CP matrix. We answer the question in the DNN case, but the CP case is still open.& COPY; 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 23
页数:14
相关论文
共 50 条
  • [31] CONCERNING NONNEGATIVE MATRICES AND DOUBLY STOCHASTIC MATRICES
    SINKHORN, R
    KNOPP, P
    PACIFIC JOURNAL OF MATHEMATICS, 1967, 21 (02) : 343 - &
  • [32] Inverse eigenvalue problem for Jacobi matrix and nonnegative matrices
    Zadeh, Somayeh Zangoei
    Rivaz, Azim
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (05)
  • [33] Local inverse spectrum theorems for real and nonnegative matrices
    Karl-Heinz Förster
    Béla Nagy
    Márta Szilvási
    Acta Scientiarum Mathematicarum, 2010, 76 (1-2): : 55 - 70
  • [34] Local inverse spectrum theorems for real and nonnegative matrices
    Forster, Karl-Heinz
    Nagy, Bela
    Szilvasi, Marta
    ACTA SCIENTIARUM MATHEMATICARUM, 2010, 76 (1-2): : 55 - 70
  • [35] ROW SUMS AND INVERSE ROW SUMS FOR NONNEGATIVE MATRICES
    FRIEDLAND, S
    HEMASHINHA, R
    SCHNEIDER, H
    STUART, J
    WEAVER, J
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (04) : 1157 - 1166
  • [36] On Hankel matrices and the symmetric nonnegative inverse eigenvalue problem
    Julio, Ana, I
    Diaz, Roberto C.
    Herrera, Timoteo
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (03): : 474 - 487
  • [37] RANGE DECOMPOSITION AND GENERALIZED INVERSE OF NONNEGATIVE HERMITIAN MATRICES
    ROSENBERG, M
    SIAM REVIEW, 1969, 11 (04) : 568 - +
  • [38] INVERSE-POSITIVE INTERVAL MATRICES
    ROHN, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (05): : T492 - T493
  • [39] TRIDIAGONALIZATION OF COMPLETELY NONNEGATIVE MATRICES
    RAINEY, JW
    HABETLER, GJ
    MATHEMATICS OF COMPUTATION, 1972, 26 (117) : 121 - &
  • [40] NONNEGATIVE MATRICES THAT ARE SIMILAR TO POSITIVE MATRICES
    Laffey, Thomas J.
    Loewy, Raphael
    Smigoc, Helena
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) : 629 - 649