On BMO and Hardy regularity estimates for a class of non-local elliptic equations

被引:2
|
作者
Ma, Wenxian [1 ]
Yang, Sibei [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-local elliptic equation; BMO space; Hardy space; Bessel potential space; solvability; PARABOLIC EQUATIONS; COEFFICIENTS;
D O I
10.1017/prm.2022.82
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let $\sigma \in (0,\,2)$, $\chi <^>{(\sigma )}(y):={\mathbf 1}_{\sigma \in (1,2)}+{\mathbf 1}_{\sigma =1} {\mathbf 1}_{y\in B(\mathbf {0},\,1)}$, where $\mathbf {0}$ denotes the origin of $\mathbb {R}<^>n$, and $a$ be a non-negative and bounded measurable function on $\mathbb {R}<^>n$. In this paper, we obtain the boundedness of the non-local elliptic operator\[ Lu(x):=\int_{\mathbb{R}<^>n}\left[u(x+y)-u(x)-\chi<^>{(\sigma)}(y)y\cdot\nabla u(x)\right]a(y)\,\frac{{\rm d}y}{|y|<^>{n+\sigma}} \]from the Sobolev space based on $\mathrm {BMO}(\mathbb {R}<^>n)\cap (\bigcup _{p\in (1,\infty )}L<^>p(\mathbb {R}<^>n))$ to the space $\mathrm {BMO}(\mathbb {R}<^>n)$, and from the Sobolev space based on the Hardy space $H<^>1(\mathbb {R}<^>n)$ to $H<^>1(\mathbb {R}<^>n)$. Moreover, for any $\lambda \in (0,\,\infty )$, we also obtain the unique solvability of the non-local elliptic equation $Lu-\lambda u=f$ in $\mathbb {R}<^>n$, with $f\in \mathrm {BMO}(\mathbb {R}<^>n)\cap (\bigcup _{p\in (1,\infty )}L<^>p(\mathbb {R}<^>n))$ or $H<^>1(\mathbb {R}<^>n)$, in the Sobolev space based on $\mathrm {BMO}(\mathbb {R}<^>n)$ or $H<^>1(\mathbb {R}<^>n)$. The boundedness and unique solvability results given in this paper are further devolvement for the corresponding results in the scale of the Lebesgue space $L<^>p(\mathbb {R}<^>n)$ with $p\in (1,\,\infty )$, established by H. Dong and D. Kim [J. Funct. Anal. 262 (2012), 1166-1199], in the endpoint cases of $p=1$ and $p=\infty$.
引用
收藏
页码:2025 / 2052
页数:28
相关论文
共 50 条
  • [21] Boundedness of non-local operators with spatially dependent coefficients and Lp-estimates for non-local equations
    Dong, Hongjie
    Jung, Pilgyu
    Kim, Doyoon
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (02)
  • [22] On non-local nonlinear elliptic equations involving an eigenvalue problem
    Ching-yu Chen
    Yueh-cheng Kuo
    Kuan-Hsiang Wang
    Tsung-fang Wu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [23] Approximation by solutions of certain class of non-local elliptic problems
    Sheftel, Z
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 673 - 674
  • [24] Analysis of a class of completely non-local elliptic diffusion operators
    Li, Yulong
    Celik, Emine
    Telyakovskiy, Aleksey S.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (02) : 519 - 553
  • [25] Fractional elliptic equations, Caccioppoli estimates and regularity
    Caffarelli, Luis A.
    Stinga, Pablo Raul
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (03): : 767 - 807
  • [26] Analysis of a class of completely non-local elliptic diffusion operators
    Yulong Li
    Emine Çelik
    Aleksey S. Telyakovskiy
    Fractional Calculus and Applied Analysis, 2024, 27 : 519 - 553
  • [27] MULTIPLICITY OF SOLUTIONS FOR A CLASS OF NON-LOCAL ELLIPTIC OPERATORS SYSTEMS
    Bai, Chuanzhi
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) : 715 - 729
  • [28] Holder estimates for non-local parabolic equations with critical drift
    Chang-Lara, Hector A.
    Davila, Gonzalo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) : 4237 - 4284
  • [29] Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations
    Capella, Antonio
    Davila, Juan
    Dupaigne, Louis
    Sire, Yannick
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) : 1353 - 1384
  • [30] New estimates for a class of non-local approximations of the total variation
    Picenni, Nicola
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (01)