Computing Euclidean Belyi maps

被引:0
|
作者
Radosevich, Matthew [1 ]
Voight, John [1 ]
机构
[1] Dartmouth Coll, Dept Math, 6188 Kemeny Hall, Hanover, NH 03755 USA
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2023年 / 35卷 / 02期
关键词
Belyi maps; elliptic curves;
D O I
10.5802/jtnb.1256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit an explicit algorithm to compute three-point branched covers of the complex projective line when the uniformizing triangle group is Euclidean.
引用
收藏
页码:543 / 565
页数:23
相关论文
共 50 条
  • [31] RIDGE POINTS IN EUCLIDEAN DISTANCE MAPS
    ARCELLI, C
    DIBAJA, GS
    PATTERN RECOGNITION LETTERS, 1992, 13 (04) : 237 - 243
  • [32] CONSTRUCTION OF HARMONIC MAPS OF EUCLIDEAN SPHERES
    RATTO, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (08): : 185 - 186
  • [33] EUCLIDEAN HYPERSURFACES WITH ISOMETRIC GAUSS MAPS
    DAJCZER, M
    GROMOLL, D
    MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (02) : 201 - 205
  • [34] Circle packings of maps -The Euclidean case
    Mohar B.
    Rendiconti del Seminario Matematico e Fisico di Milano, 1997, 67 (1): : 191 - 206
  • [35] Metric information in cognitive maps: Euclidean embedding of non-Euclidean environments
    Baumann, Tristan
    Mallot, Hanspeter A.
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (12)
  • [36] Pure Maps between Euclidean Jordan Algebras
    Westerbaan, Abraham
    Westerbaan, Bas
    van de Wetering, John
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2019, (287): : 345 - 364
  • [37] Integration of Euclidean and path distances in hippocampal maps
    Loes Ottink
    Naomi de Haas
    Christian F. Doeller
    Scientific Reports, 15 (1)
  • [38] On the Affine Gauss Maps of Submanifolds of Euclidean Space
    Henri Anciaux
    Pierre Bayard
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 137 - 165
  • [39] Isometric Euclidean submanifolds with isometric Gauss maps
    Dajczer, M.
    Jimenez, M. I.
    Vlachos, Th.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
  • [40] Rationality is decidable for nearly Euclidean Thurston maps
    William Floyd
    Walter Parry
    Kevin M. Pilgrim
    Geometriae Dedicata, 2021, 213 : 487 - 512