Evaluation of handling degrees of missingness in the features of machine learning algorithms to predict overall survival using real-world lung cancer data

被引:0
|
作者
Le, Hoa [1 ]
Qu, Pingping [1 ]
Xiong, Yan [1 ]
Tanaka, Yoko [1 ]
机构
[1] Daiichi Sankyo, Tokyo, Japan
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
905
引用
收藏
页码:423 / 423
页数:1
相关论文
共 50 条
  • [21] Improving the Diagnosis of Systemic Lupus Erythematosus with Machine Learning Algorithms Based on Real-World Data
    Park, Meeyoung
    MATHEMATICS, 2024, 12 (18)
  • [22] Real-World Progression-Free Survival as an Endpoint in Lung Cancer: Replicating Atezolizumab and Docetaxel Arms of the OAK Trial Using Real-World Data
    Mhatre, Shivani K.
    Machado, Robson J. M.
    Ton, Thanh G. N.
    Trinh, Huong
    Mazieres, Julien
    Rittmeyer, Achim
    Bretscher, Michael T.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2023, 114 (06) : 1313 - 1322
  • [23] High-Fiber Intake Predicts Overall Survival in Lung Cancer Patients - Real-World Analyses
    Borchardt, I.
    Farias, G.
    Fraga, G.
    Augusto, C.
    Chek, S.
    Janoni, J.
    Oliveira, J.
    Lattanzi, J.
    Barcellos, A.
    Figueiredo, V.
    Alves, C.
    Telles, F.
    Dias, F.
    De Marchi, P.
    Montella, T.
    Peres, W.
    Melo, A.
    Ferreira, C. G.
    JOURNAL OF THORACIC ONCOLOGY, 2024, 19 (10) : S705 - S705
  • [24] DEFINING REAL-WORLD PRODUCT PERFORMANCE USING SURVIVAL ANALYSIS AND SUPERIVSED MACHINE LEARNING
    Geldof, T.
    van Dyck, W.
    Moreau, Y.
    VALUE IN HEALTH, 2016, 19 (07) : A380 - A380
  • [25] IMPACT ON OVERALL SURVIVAL ACCORDING TO BREAST CANCER IMMUNOPHENOTYPES: REAL-WORLD DATA IN METASTATIC BREAST CANCER IN ECUADOR
    Valencia-Espinoza, Evelyn
    Pulla-Cadmilema, Emiliano
    Avila, Lissette P. Velez
    Bohorquez, Lissette Yagual
    Salazar, Maria del Mar Sanchez
    Aguilar, Patricia Tamayo
    Martin-Delgado, Jimmy
    Martinez, Glenda Ramos
    Matamoros, Katherine Garcia
    Cornejo, Roberto Escala
    Merchan, Felipe Campoverde
    Vivanco, Ruth Engracia
    Mariduena, Mayra Santacruz
    Guerrero, Isabel Delgado
    Floril, Veronica Torres
    Gamboa, Diego Garcia
    Rodriguez-Melendez, Elina A.
    CANCER RESEARCH, 2023, 83 (05)
  • [26] Application of machine learning in predicting survival outcomes involving real-world data: a scoping review
    Huang, Yinan
    Li, Jieni
    Li, Mai
    Aparasu, Rajender R.
    BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
  • [27] Application of machine learning in predicting survival outcomes involving real-world data: a scoping review
    Yinan Huang
    Jieni Li
    Mai Li
    Rajender R. Aparasu
    BMC Medical Research Methodology, 23
  • [28] Evaluation of quality of life and survival time of lung cancer patients treated in a certified German lung cancer center; a real-world data study
    Oei, Shiao Li
    Thronicke, Anja
    Wuestefeld, Hannah
    Matthes, Burkhard
    Grah, Christian
    Schad, Friedemann
    ONCOLOGY RESEARCH AND TREATMENT, 2022, 45 (SUPPL 3) : 163 - 163
  • [29] Can Real-world Data and Rapid Learning Drive Improvements in Lung Cancer Survival? The RAPID-RT Study
    Price, G.
    Devaney, S.
    French, D. P.
    Holley, R.
    Holm, S.
    Kontopantelis, E.
    McWilliam, A.
    Payne, K.
    Proudlove, N.
    Sanders, C.
    Willans, R.
    van Staa, T.
    Hamrang, L.
    Turner, B.
    Parsons, S.
    Faivre-Finn, C.
    CLINICAL ONCOLOGY, 2022, 34 (06) : 407 - 410
  • [30] Predicting Clinical Remission of Chronic Urticaria Using Random Survival Forests: Machine Learning Applied to Real-World Data
    Irina Pivneva
    Maria-Magdalena Balp
    Yvonne Geissbühler
    Thomas Severin
    Serge Smeets
    James Signorovitch
    Jimmy Royer
    Yawen Liang
    Tom Cornwall
    Jutong Pan
    Andrii Danyliv
    Sarah Jane McKenna
    Alexander M. Marsland
    Weily Soong
    Dermatology and Therapy, 2022, 12 : 2747 - 2763