Darboux Transformations for the (A)over-cap2n(2)-KdV Hierarchy

被引:0
|
作者
Terng, Chuu-Lian [1 ]
Wu, Zhiwei [2 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Sun Yat sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
关键词
Darboux transformation; Backlund transformation; Isotropic curve flow; KdV-type hierarchy; Soliton solution; BACKLUND TRANSFORMATION; EQUATION;
D O I
10.1007/s12220-022-01158-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The (A) over cap ((2))(2n) -hierarchy can be constructed from a splitting of the Kac-Moody algebra of type (A) over cap ((1))(2n) by an involution. By choosing certain cross section of the gauge action, we obtain the (A) over cap ((2))(2n)-KdV hierarchy. They are the equations for geometric invariants of isotropic curve flows of type A, which gives a geometric interpretation of the soliton hierarchy. In this paper, we construct Darboux and Backlund transformations for the (A) over cap ((2))(2n)-hierarchy, and use it the construct Darboux transformations for the (A) over cap ((2))(2n)-KdV hierarchy and isotropic curve flows of type A. Moreover, explicit soliton solutions for these hierarchies are given.
引用
收藏
页数:28
相关论文
共 50 条