Energy transfer of the solar wind turbulence based on Parker solar probe and other spacecraft observations

被引:7
|
作者
Wu, Honghong [1 ]
Tu, Chuanyi [2 ]
He, Jiansen [2 ]
Wang, Xin [3 ]
Yang, Liping [4 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
[2] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[3] Beihang Univ, Sch Space & Environm, Beijing 100083, Peoples R China
[4] Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, SIGMA Weather Grp, Beijing 100190, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
INTERPLANETARY ALFVENIC FLUCTUATIONS; HIGH-SPEED STREAMS; MAGNETIC-FIELD; MAGNETOHYDRODYNAMIC TURBULENCE; RADIAL EVOLUTION; CROSS-HELICITY; INERTIAL-RANGE; POWER SPECTRA; 2-FLUID MODEL; LENGTH SCALES;
D O I
10.1063/5.0121140
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The supersonic solar wind, first predicted by Parker and then observed by Mariners, extends to form a heliosphere around the Sun. The energy supply from the energy containing range, the energy cascade though the inertial range, and the eventual energy dissipation are three basic processes of the energy transfer in the solar wind and have been studied for a long time. However, some basic issues remain to be discovered. Here, we review the recent progress in the mechanisms of energy transfer of the solar wind turbulence from the observational perspective. Based on the Parker solar probe observations, the energy supply mechanism by the low-frequency break sweeping is proposed to provide enough energy for the proton heating in the slow solar wind. This mechanism also works in the fast solar wind. The energy flux by the low-frequency break sweeping is consistent with that by the classical von Karman decay mechanism. For the energy cascade in the inertial range, the scaling behavior of the third-order structure functions demonstrates the effect of the complex dynamics of the solar wind. The process of energy transfer is fundamental to understand the solar wind turbulence and help to construct the model of the space environment.@2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Sub-Alfvenic Solar Wind Observed by the Parker Solar Probe: Characterization of Turbulence, Anisotropy, Intermittency, and Switchback
    Bandyopadhyay, R.
    Matthaeus, W. H.
    McComas, D. J.
    Chhiber, R.
    Usmanov, A., V
    Huang, J.
    Livi, R.
    Larson, D. E.
    Kasper, J. C.
    Case, A. W.
    Stevens, M.
    Whittlesey, P.
    Romeo, O. M.
    Bale, S. D.
    Bonnell, J. W.
    de Wit, T. Dudok
    Goetz, K.
    Harvey, P. R.
    MacDowall, R. J.
    Malaspina, D. M.
    Pulupa, M.
    ASTROPHYSICAL JOURNAL LETTERS, 2022, 926 (01)
  • [42] Energy spectrum transfer equations of solar wind turbulence
    Tu, CY
    Marsch, E
    SOLAR WIND EIGHT - PROCEEDINGS OF THE EIGHTH INTERNATIONAL SOLAR WIND CONFERENCE, 1996, (382): : 233 - 238
  • [43] Solar wind plasma interaction with solar probe plus spacecraft
    Guillemant, S.
    Genot, V.
    Mateo-Velez, J. -C.
    Ergun, R.
    Louarn, P.
    ANNALES GEOPHYSICAE, 2012, 30 (07) : 1075 - 1092
  • [44] Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe
    Nicolaou, Georgios
    Livadiotis, George
    Wicks, Robert T.
    Verscharen, Daniel
    Maruca, Bennett A.
    ASTROPHYSICAL JOURNAL, 2020, 901 (01):
  • [45] The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe
    Finley, Adam J.
    Matt, Sean P.
    Reville, Victor
    Pinto, Rui F.
    Owens, Mathew
    Kasper, Justin C.
    Korreck, Kelly E.
    Case, A. W.
    Stevens, Michael L.
    Whittlesey, Phyllis
    Larson, Davin
    Livi, Roberto
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 902 (01)
  • [46] Characteristics of Magnetic Holes in the Solar Wind Revealed by Parker Solar Probe
    Yu, L.
    Huang, S. Y.
    Yuan, Z. G.
    Jiang, K.
    Xiong, Q. Y.
    Xu, S. B.
    Wei, Y. Y.
    Zhang, J.
    Zhang, Z. H.
    ASTROPHYSICAL JOURNAL, 2021, 908 (01):
  • [47] Small-scale Magnetic Flux Ropes in Stream Interaction Regions from Parker Solar Probe and Wind Spacecraft Observations
    Chen, Yu
    Hu, Qiang
    Allen, Robert C.
    Jian, Lan K.
    ASTROPHYSICAL JOURNAL, 2023, 943 (01):
  • [48] Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au
    Allen, R. C.
    Lario, D.
    Odstrcil, D.
    Ho, G. C.
    Jian, L. K.
    Cohen, C. M. S.
    Badman, S. T.
    Jones, S. I.
    Arge, C. N.
    Mays, M. L.
    Mason, G. M.
    Bale, S. D.
    Bonnell, J. W.
    Case, A. W.
    Christian, E. R.
    de Wit, T. Dudok
    Goetz, K.
    Harvey, P. R.
    Henney, C. J.
    Hill, M. E.
    Kasper, J. C.
    Korreck, K. E.
    Larson, D.
    Livi, R.
    MacDowall, R. J.
    Malaspina, D. M.
    McComas, D. J.
    McNutt, R.
    Mitchell, D. G.
    Pulupa, M.
    Raouafi, N.
    Schwadron, N.
    Stevens, M. L.
    Whittlesey, P. L.
    Wiedenbeck, M.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02):
  • [49] Constraints on Solar Wind Density and Velocity Based on Coronal Tomography and Parker Solar Probe Measurements
    Bunting, Kaine A.
    Barnard, Luke
    Owens, Mathew J.
    Morgan, Huw
    ASTROPHYSICAL JOURNAL, 2024, 961 (01):
  • [50] The Solar Probe Cup on the Parker Solar Probe
    Case, A. W.
    Kasper, Justin C.
    Stevens, Michael L.
    Korreck, Kelly E.
    Paulson, Kristoff
    Daigneau, Peter
    Caldwell, Dave
    Freeman, Mark
    Henry, Thayne
    Klingensmith, Brianna
    Bookbinder, J. A.
    Robinson, Miles
    Berg, Peter
    Tiu, Chris
    Wright, K. H., Jr.
    Reinhart, Matthew J.
    Curtis, David
    Ludlam, Michael
    Larson, Davin
    Whittlesey, Phyllis
    Livi, Roberto
    Klein, Kristopher G.
    Martinovic, Mihailo M.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02):