Energy transfer of the solar wind turbulence based on Parker solar probe and other spacecraft observations

被引:7
|
作者
Wu, Honghong [1 ]
Tu, Chuanyi [2 ]
He, Jiansen [2 ]
Wang, Xin [3 ]
Yang, Liping [4 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
[2] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[3] Beihang Univ, Sch Space & Environm, Beijing 100083, Peoples R China
[4] Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, SIGMA Weather Grp, Beijing 100190, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
INTERPLANETARY ALFVENIC FLUCTUATIONS; HIGH-SPEED STREAMS; MAGNETIC-FIELD; MAGNETOHYDRODYNAMIC TURBULENCE; RADIAL EVOLUTION; CROSS-HELICITY; INERTIAL-RANGE; POWER SPECTRA; 2-FLUID MODEL; LENGTH SCALES;
D O I
10.1063/5.0121140
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The supersonic solar wind, first predicted by Parker and then observed by Mariners, extends to form a heliosphere around the Sun. The energy supply from the energy containing range, the energy cascade though the inertial range, and the eventual energy dissipation are three basic processes of the energy transfer in the solar wind and have been studied for a long time. However, some basic issues remain to be discovered. Here, we review the recent progress in the mechanisms of energy transfer of the solar wind turbulence from the observational perspective. Based on the Parker solar probe observations, the energy supply mechanism by the low-frequency break sweeping is proposed to provide enough energy for the proton heating in the slow solar wind. This mechanism also works in the fast solar wind. The energy flux by the low-frequency break sweeping is consistent with that by the classical von Karman decay mechanism. For the energy cascade in the inertial range, the scaling behavior of the third-order structure functions demonstrates the effect of the complex dynamics of the solar wind. The process of energy transfer is fundamental to understand the solar wind turbulence and help to construct the model of the space environment.@2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A statistical study of the compressible energy cascade rate in solar wind turbulence: Parker solar probe observations
    Brodiano, M.
    Dmitruk, P.
    Andres, N.
    PHYSICS OF PLASMAS, 2023, 30 (03)
  • [2] Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from Parker Solar Probe
    Bandyopadhyay, Riddhi
    Goldstein, M. L.
    Maruca, B. A.
    Matthaeus, W. H.
    Parashar, T. N.
    Ruffolo, D.
    Chhiber, R.
    Usmanov, A.
    Chasapis, A.
    Qudsi, R.
    Bale, Stuart D.
    Bonnell, J. W.
    de Wit, Thierry Dudok
    Goetz, Keith
    Harvey, Peter R.
    MacDowall, Robert J.
    Malaspina, David M.
    Pulupa, Marc
    Kasper, J. C.
    Korreck, K. E.
    Case, A. W.
    Stevens, M.
    Whittlesey, P.
    Larson, D.
    Livi, R.
    Klein, K. G.
    Velli, M.
    Raouafi, N.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02):
  • [3] The Ion Transition Range of Solar Wind Turbulence in the Inner Heliosphere: Parker Solar Probe Observations
    Huang, S. Y.
    Sahraoui, F.
    Andres, N.
    Hadid, L. Z.
    Yuan, Z. G.
    He, J. S.
    Zhao, J. S.
    Galtier, S.
    Zhang, J.
    Deng, X. H.
    Jiang, K.
    Yu, L.
    Xu, S. B.
    Xiong, Q. Y.
    Wei, Y. Y.
    Dudok de Wit, T.
    Bale, S. D.
    Kasper, J. C.
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 909 (01)
  • [4] Cross-scale Correlations in Imbalanced Solar Wind Turbulence: Parker Solar Probe Observations
    Zhao, G. Q.
    Meyrand, R.
    Feng, H. Q.
    Wu, D. J.
    Kasper, J. C.
    ASTROPHYSICAL JOURNAL, 2022, 938 (02):
  • [5] New Observations of Solar Wind 1/f Turbulence Spectrum from Parker Solar Probe
    Huang, Zesen
    Sioulas, Nikos
    Shi, Chen
    Velli, Marco
    Bowen, Trevor
    Davis, Nooshin
    Chandran, B. D. G.
    Matteini, Lorenzo
    Kang, Ning
    Shi, Xiaofei
    Huang, Jia
    Bale, Stuart D.
    Kasper, J. C.
    Larson, Davin E.
    Livi, Roberto
    Whittlesey, P. L.
    Rahmati, Ali
    Paulson, Kristoff
    Stevens, M.
    Case, A. W.
    de Wit, Thierry Dudok
    Malaspina, David M. M.
    Bonnell, J. W.
    Goetz, Keith
    Harvey, Peter R. R.
    MacDowall, Robert J. J.
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 950 (01)
  • [6] Spacecraft observations of solar wind turbulence: an overview
    Horbury, TS
    Forman, MA
    Oughton, S
    PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 : B703 - B717
  • [7] Spectral Features in Field-aligned Solar Wind Turbulence from Parker Solar Probe Observations
    Zhao, L-L
    Zank, G. P.
    Adhikari, L.
    Nakanotani, M.
    Telloni, D.
    Carbone, F.
    ASTROPHYSICAL JOURNAL, 2020, 898 (02):
  • [8] A Solar Coronal Hole and Fast Solar Wind Turbulence Model and First-orbit Parker Solar Probe (PSP) Observations
    Adhikari, L.
    Zank, G. P.
    Zhao, L. -L.
    ASTROPHYSICAL JOURNAL, 2020, 901 (02):
  • [9] Two Correlations with Enhancement Near the Proton Gyroradius Scale in Solar Wind Turbulence: Parker Solar Probe (PSP) and Wind Observations
    Zhao, G. Q.
    Lin, Y.
    Wang, X. Y.
    Feng, H. Q.
    Wu, D. J.
    Kasper, J. C.
    ASTROPHYSICAL JOURNAL, 2022, 924 (02):
  • [10] Solar wind energy flux observations in the inner heliosphere: first results from Parker Solar Probe
    Liu, M.
    Issautier, K.
    Meyer-Vernet, N.
    Moncuquet, M.
    Maksimovic, M.
    Halekas, J. S.
    Huang, J.
    Griton, L.
    Bale, S.
    Bonnell, J. W.
    Case, A. W.
    Goetz, K.
    Harvey, P. R.
    Kasper, J. C.
    MacDowall, R. J.
    Malaspina, D. M.
    Pulupa, M.
    Stevens, M. L.
    ASTRONOMY & ASTROPHYSICS, 2021, 650