From combinatorial maps to correlation functions in loop models

被引:5
|
作者
Grans-Samuelsson, Linnea [1 ,5 ]
Jacobsen, Jesper Lykke [1 ,2 ,3 ]
Nivesvivat, Rongvoram [1 ,6 ]
Ribault, Sylvain [1 ]
Saleur, Hubert [1 ,4 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, Gif Sur Yvette, France
[2] Univ Paris, Univ PSL, Sorbonne Univ, Lab Phys,Ecole Normale Super,ENS,CNRS, Paris, France
[3] Sorbonne Univ, Ecole Normale Super, CNRS, Lab Phys LPENS, Paris, France
[4] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA USA
[5] Microsoft Stn Q, Santa Barbara, CA 93106 USA
[6] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
来源
SCIPOST PHYSICS | 2023年 / 15卷 / 04期
基金
欧洲研究理事会;
关键词
POLYMER NETWORKS; EXPONENTS; SYMMETRY;
D O I
10.21468/SciPostPhys.15.4.147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In two-dimensional statistical physics, correlation functions of the O(N) and Potts models may be written as sums over configurations of non-intersecting loops. We define sums associated to a large class of combinatorial maps (also known as ribbon graphs). We allow disconnected maps, but not maps that include monogons. Given a map with n vertices, we obtain a function of the moduli of the corresponding punctured Riemann surface. Due to the map's combinatorial (rather than topological) nature, that function is single-valued, and we call it an n-point correlation function. We conjecture that in the critical limit, such functions form a basis of solutions of certain conformal bootstrap equations. They include all correlation functions of the O(N) and Potts models, and correlation functions that do not belong to any known model. We test the conjecture by counting solutions of crossing symmetry for four-point functions on the sphere.
引用
收藏
页数:40
相关论文
共 50 条
  • [21] Signatures of Combinatorial Maps
    Gosselin, Stephane
    Damiand, Guillaume
    Solnon, Christine
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2009, 5852 : 370 - 382
  • [22] REGULAR COMBINATORIAL MAPS
    VINCE, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (03) : 256 - 277
  • [23] CUBIC COMBINATORIAL MAPS
    LITTLE, CHC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (01) : 44 - 63
  • [24] COMBINATORIAL ORIENTED MAPS
    TUTTE, WT
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (05): : 986 - 1004
  • [25] Correlation functions in holographic minimal models
    Papadodimas, Kyriakos
    Raju, Suvrat
    NUCLEAR PHYSICS B, 2012, 856 (02) : 607 - 646
  • [26] Correlation functions of complex matrix models
    Bergere, M. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (28): : 8749 - 8773
  • [27] Correlation Functions for Lattice Integrable Models
    Smirnov, F.
    ACTA POLYTECHNICA, 2008, 48 (02) : 29 - 35
  • [28] Correlation functions in decorated lattice models
    Ispolatov, I
    Koga, K
    Widom, B
    PHYSICA A, 2001, 291 (1-4): : 49 - 59
  • [29] Correlation functions of circular Wilson loop with local operators
    Buchbinder E.I.
    Physics of Particles and Nuclei Letters, 2014, 11 (7) : 924 - 926
  • [30] Evaluation of quantum correlation functions from classical data: Anharmonic models
    Kim, Hyojoon
    Rossky, Peter J.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (07):