Recently a new formalism to describe charged-current (CC) neutrino-nucleus reactions has been developed (Krmpotic et al., Phys Rev C 71:044319, 2005). Here, we have extended this model to describe neutrino-nucleus reactions via neutral-current (NC). As the weak interaction observables showed to be very sensitive to the structure of nuclear states, the use of microscopic nuclear structure models in a consistent theoretical framework are therefore essential for a quantitative description of neutrino-nucleus reactions. In previous calculations, we described the nuclear part of these charge-exchange reactions within the Projected pn-QRPA (PQRPA) and usual pn-QRPA. In this work, we implemented the charge-conserving QRPA (ccQRPA), taking into account the proton-proton, neutron-neutron and proton-neutron pairing correlations. We evaluated inelastic neutrino-nucleus cross sections for 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{12}$$\end{document}C and 40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{40}$$\end{document}Ar comparing to other nuclear models in the literature. The cross sections for 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{12}$$\end{document}C are folded by Michel spectrum, where a good agreement between our result and the experimental data for 12C(nu,nu ')12C*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{12}C(\nu ,\nu {'})<^>{12}C<^>*$$\end{document} [1+,1 ;15.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<^>+,1;15.1$$\end{document} MeV] (Drexlin et al., in Proceedings of the Neutrino Workshop, Heidelberg, 1987. Springer-Verlag, Berlin, 1987; Drexlin et al., Phys Lett B 267:321, 1991; Zeitnitz, Prog Part Nucl Phys 32:351, 1994; Kleinfellner et al., in Proceedings of the XIII International Conference on Particles and Nuclei, Perugia, Italy, 1993) is achieved. For 40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{40}$$\end{document}Ar, the competition between Gamow-Teller (GT) and dipole transitions showed to be an important ingredient to understand these reactions, that appears as the backgrounds to neutrinos appearance in the far detector in DUNE experiment.