Identifying urban emission sources and their contribution to the oxidative potential of fine particulate matter (PM2.5) in Kuwait

被引:5
|
作者
Aldekheel, Mohammad [1 ,2 ]
Tohidi, Ramin [1 ]
Al-Hemoud, Ali [3 ]
Alkudari, Fahad [4 ]
Verma, Vishal [5 ]
Subramanian, P. S. Ganesh [5 ]
Sioutas, Constantinos [1 ]
机构
[1] Univ Southern Calif, Dept Civil & Environm Engn, Los Angeles, CA 90089 USA
[2] Kuwait Univ, Dept Civil Engn, POB 5969, Safat 13060, Kuwait
[3] Kuwait Inst Sci Res, Environm & Life Sci Res Ctr, POB 5969, Safat 13109, Kuwait
[4] Minist Justice, Publ Adm Experts, POB 6, Safat 12008, Kuwait
[5] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
基金
美国国家卫生研究院;
关键词
Particulate matter; Kuwait; Source apportionment; Oxidative potential; Dust; QUASI-ULTRAFINE PARTICLES; POLYCYCLIC AROMATIC-HYDROCARBONS; PERSISTENT FREE-RADICALS; WATER-SOLUBLE PM2.5; SOURCE APPORTIONMENT; LOS-ANGELES; ORGANIC-CARBON; AIR-POLLUTION; REDOX ACTIVITY; UNITED-STATES;
D O I
10.1016/j.envpol.2023.123165
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, we investigated the seasonal variations, chemical composition, sources, and oxidative potential of ambient PM2.5 (particles with a diameter of less than 2.5 mu m) in Kuwait City. The sampling campaign was conducted within the premises of Kuwait Institute for Scientific Research from June 2022 to May 2023, covering different seasons throughout the year. The personal cascade impactor sampler (PCIS) operated at flow rate of 9 L/min was employed to collect weekly PM2.5 samples on PTFE and quarts filters. These collected samples were analyzed for carbonaceous species (i.e., elemental and organic carbon), metals and transition elements, inorganic ions, and DTT (dithiothreitol) redox activity. Furthermore, principal component analysis (PCA) and multi-linear regression (MLR) were used to identify the predominant emission sources and their percentage contribution to the redox activity of PM2.5 in Kuwait. The results of this study highlighted that the annual-averaged ambient PM2.5 mass concentrations in Kuwait (59.9 mu g/m3) substantially exceeded the World Health Organization (WHO) guideline of 10 mu g/m3. Additionally, the summer season displayed the highest PM2.5 mass concentration (75.2 mu g/m3) compared to other seasons, primarily due to frequent dust events exacerbated by high-speed winds. The PCA identified four primary PM2.5 sources: mineral dust, fossil fuel combustion, road traffic, and secondary aerosols. The mineral dust was found to be the predominant source, contributing 36.1% to the PM2.5 mass, followed by fossil fuel combustion and traffic emissions with contributions of 23.7% and 20.3%, respectively. The findings of MLR revealed that road traffic was the most significant contributor to PM2.5 oxidative potential, accounting for 47% of the total DTT activity. In conclusion, this comprehensive investigation provides essential insights into the sources and health implications of PM2.5 in Kuwait, underscoring the critical need for effective air quality management strategies to mitigate the impacts of particulate pollution in the region.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Fine Particulate Matter (PM2.5) and the Risk of Stroke in the REGARDS Cohort
    McClure, Leslie A.
    Loop, Matthew S.
    Crosson, William
    Kleindorfer, Dawn
    Kissela, Brett
    Al-Hamdan, Mohammad
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2017, 26 (08): : 1739 - 1744
  • [32] The health economic loss of fine particulate matter (PM2.5) in Beijing
    Li, Li
    Lei, Yalin
    Wu, Sanmang
    Chen, Jiabin
    Yan, Dan
    JOURNAL OF CLEANER PRODUCTION, 2017, 161 : 1153 - 1161
  • [33] Growing Urbanization and the Impact on Fine Particulate Matter (PM2.5) Dynamics
    Han, Lijian
    Zhou, Weiqi
    Li, Weifeng
    SUSTAINABILITY, 2018, 10 (06):
  • [34] Potential exposure to fine particulate matter (PM2.5) and black carbon on jogging trails in Macau
    Liu, Ben
    He, Mandy Minle
    Wu, Cheng
    Li, Jinjian
    Li, Ying
    Lau, Ngai Ting
    Yu, Jian Zhen
    Lau, Alexis K. H.
    Fung, Jimmy C. H.
    Hoi, Ka In
    Mok, Kai Meng
    Chan, Chak K.
    Li, Yong Jie
    ATMOSPHERIC ENVIRONMENT, 2019, 198 : 23 - 33
  • [35] The relationship between fine particulate matter (PM2.5) and schizophrenia severity
    Eguchi, Rika
    Onozuka, Daisuke
    Ikeda, Kouji
    Kuroda, Kenji
    Ieiri, Ichiro
    Hagihara, Akihito
    INTERNATIONAL ARCHIVES OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH, 2018, 91 (05) : 613 - 622
  • [36] Hemolytic Properties of Fine Particulate Matter (PM2.5) in In Vitro Systems
    Bai, Jiahui
    Zhang, Mengyuan
    Shao, Longyi
    Jones, Timothy P.
    Feng, Xiaolei
    Huang, Man
    Berube, Kelly A.
    TOXICS, 2024, 12 (04)
  • [37] Atmospheric fine particulate matter (PM2.5) in Bloemfontein, South Africa
    van der Westhuizen, Deidre
    Howlett-Downing, Chantelle
    Molnar, Peter
    Boman, Johan
    Wichmann, Janine
    von Eschwege, Karel G.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2024, 104 (18) : 6848 - 6863
  • [38] Impacts and potential mechanisms of fine particulate matter (PM2.5) on male testosterone biosynthesis disruption
    Zheng, Shaokai
    Zhao, Nannan
    Lin, Xiaojun
    Qiu, Lianglin
    REVIEWS ON ENVIRONMENTAL HEALTH, 2024, 39 (04) : 777 - 789
  • [39] Identifying and quantifying transported vs. local sources of New York City PM2.5 fine particulate matter air pollution
    Lall, Ramona
    Thurston, George D.
    ATMOSPHERIC ENVIRONMENT, 2006, 40 : S333 - S346
  • [40] Linking Switzerland's PM10 and PM2.5 oxidative potential (OP) with emission sources
    Grange, Stuart K.
    Uzu, Gaelle
    Weber, Samuel
    Jaffrezo, Jean-Luc
    Hueglin, Christoph
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (10) : 7029 - 7050