2D Material-Based Wearable Energy Harvesting Textiles: A Review

被引:25
|
作者
Ali, Iftikhar [1 ]
Dulal, Marzia [1 ]
Karim, Nazmul [1 ,2 ]
Afroj, Shaila [1 ]
机构
[1] Univ West England, Ctr Print Res CFPR, Bristol BS16 1QY, England
[2] Nottingham Trent Univ, Shakespeare St, Nottingham NG1 4GG, England
来源
SMALL STRUCTURES | 2024年 / 5卷 / 01期
基金
英国科研创新办公室;
关键词
energy harvesting; graphene; nanogenerators; photovoltaics; wearable e-textiles; 2D materials; REDUCED GRAPHENE OXIDE; PEROVSKITE SOLAR-CELLS; TRANSITION-METAL DICHALCOGENIDES; LIQUID-PHASE EXFOLIATION; COVALENT ORGANIC FRAMEWORKS; ENHANCED THERMOELECTRIC PERFORMANCE; CHEMICAL-VAPOR-DEPOSITION; HOLE-TRANSPORT LAYER; TUNABLE ELECTRICAL-CONDUCTIVITY; WALL CARBON NANOTUBES;
D O I
10.1002/sstr.202300282
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Wearable electronic textiles (e-textiles) have emerged as a transformative technology revolutionizing healthcare monitoring and communication by seamlessly integrating with the human body. However, their practical application has been limited by the lack of compatible and sustainable power sources. Various energy sources, including solar, thermal, mechanical, and wind, have been explored for harvesting, leading to diverse energy harvesting technologies, such as photovoltaic, thermoelectric, piezoelectric, and triboelectric systems. Notably, 2D materials have gained significant attention as attractive candidates for energy harvesting and storage in e-textiles due to their unique properties, such as high surface-to-volume ratio, mechanical strength, and electrical conductivity. Textile-based energy harvesters employing 2D materials offer promising solutions for powering next-generation smart and wearable devices integrated into clothing. This comprehensive review explores the utilization of 2D materials in textile-based energy harvesters, covering their preparation, fabrication, and characterization strategies. Recent advancements are highlighted, focusing on the integration of 2D materials and their practical implementations, shedding light on the performance and effectiveness of 2D-material-based energy harvesters in e-textiles, and highlighting their potential as a sustainable alternative to conventional power supplies in wearable technologies. This review explores the utilization of 2D materials in textile-based energy harvesters, covering their preparation, fabrication, and characterization strategies. Recent advancements are highlighted, focusing on the integration of 2D materials and their practical implementations, shedding light on the performance and effectiveness of 2D-material-based energy harvesters in e-textiles, and highlighting their potential as a sustainable alternative to conventional power supplies.image (c) 2023 WILEY-VCH GmbH
引用
收藏
页数:36
相关论文
共 50 条
  • [31] 2D Layered Material-Based van der Waals Heterostructures for Optoelectronics
    Zhou, Xing
    Hu, Xiaozong
    Yu, Jing
    Liu, Shiyuan
    Shu, Zhaowei
    Zhang, Qi
    Li, Huiqiao
    Ma, Ying
    Xu, Hua
    Zhai, Tianyou
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (14)
  • [32] Emerging 2D material-based nanocarrier for cancer therapy beyond graphene
    Wang, Yingwei
    Qiu, Meng
    Won, Miae
    Jung, Eugeine
    Fan, Taojian
    Xie, Ni
    Chi, Sung-Gil
    Zhang, Han
    Kim, Jong Seung
    COORDINATION CHEMISTRY REVIEWS, 2019, 400
  • [33] Advanced AI computing enabled by 2D material-based neuromorphic devices
    Yunseok Choi
    Siwoo Jeong
    Hyeonu Jeong
    Sangmoon Han
    Jonghyeon Ko
    Si Eun Yu
    Zhihao Xu
    Min Seong Chae
    Minjae Son
    Yuan Meng
    Shijue Xu
    Ji-Hoon Kang
    Sungchul Mun
    Sang‑Hoon Bae
    npj Unconventional Computing, 2 (1):
  • [34] Operando Photoemission Imaging of the Energy Landscape from a 2D Material-Based Field-Effect Transistor
    Mastrippolito, Dario
    Cavallo, Mariarosa
    Borowski, Davy
    Bossavit, Erwan
    Gureghian, Clement
    Colle, Albin
    Gemo, Tommaso
    Khalili, Adrien
    Zhang, Huichen
    Ram, Ankita
    Dandeu, Erwan
    Ithurria, Sandrine
    Biscaras, Johan
    Dudin, Pavel
    Dayen, Jean-Francois
    Avila, Jose
    Lhuillier, Emmanuel
    Pierucci, Debora
    ACS NANO, 2025, 19 (09) : 9241 - 9249
  • [35] Frontiers of graphene and 2D material-based gas sensors for environmental monitoring
    Buckley, David J.
    Black, Nicola C. G.
    Castanon, Eli G.
    Melios, Christos
    Hardman, Melanie
    Kazakova, Olga
    2D MATERIALS, 2020, 7 (03)
  • [36] A Multi-Level Simulation Scheme for 2D Material-Based Nanoelectronics
    Zhao, Yiju
    Yoon, Youngki
    Wei, Lan
    20TH IEEE INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE NANO 2020), 2020, : 388 - 392
  • [37] The role of 2D material families in energy harvesting: An editorial overview
    Prasanth Raghavan
    Jou-Hyeon Ahn
    Manjusha Shelke
    Journal of Materials Research, 2022, 37 : 3857 - 3864
  • [38] The role of 2D material families in energy harvesting: An editorial overview
    Raghavan, Prasanth
    Ahn, Jou-Hyeon
    Shelke, Manjusha
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (22) : 3857 - 3864
  • [39] Recent progress and remaining challenges of 2D material-based terahertz detectors
    Wang, Yingxin
    Wu, Weidong
    Zhao, Ziran
    INFRARED PHYSICS & TECHNOLOGY, 2019, 102
  • [40] Recent Advancements in 2D Material-Based Memristor Technology Toward Neuromorphic Computing
    Park, Sungmin
    Naqi, Muhammad
    Lee, Namgyu
    Park, Suyoung
    Hong, Seongin
    Lee, Byeong Hyeon
    MICROMACHINES, 2024, 15 (12)